Визуализация броуновского движения — различия между версиями

Материал из Department of Theoretical and Applied Mechanics
Перейти к: навигация, поиск
(Математическая модель и разработка программы)
(Математическая модель и разработка программы)
Строка 22: Строка 22:
 
{|align="left"
 
{|align="left"
 
  |-valign="bottom"
 
  |-valign="bottom"
  |[[Файл:SD Graph.jpg|200px|left|Графика зависимости квадрата удаления частицы от начальной точки.]]
+
  |[[Файл:SD Graph.jpg|300px|left|Графика зависимости квадрата удаления частицы от начальной точки.]]
  |
+
  |-
 
  |
 
  |
 
  |}
 
  |}

Версия 08:11, 8 февраля 2016

Виртуальная лаборатория > Визуализация броуновского движения
Внешний вид визуализвции

Курсовой проект по механике дискретных сред

Цель проекта

Разработать интерактивную модель поведения частицы в дискретной среде. На полученной модели продемонстрировать процесс случайного блуждания частицы.


Математическая модель и разработка программы

За основы была взята программа, разработанная Цветковым Денисом В программу были добавлены периодические граничные условия, а также некоторые настройки.
Взаимодействие между шарами задаётся потенциалом Леннарда-Джонса
MSB formula.png Формула для вычисления среднего квадратичного смещения в двумерном случае, где T-- время по которому усредняется , x_0 -- начальная координата.
На графике представлен результат работы программы.

Графика зависимости квадрата удаления частицы от начальной точки.

Демонстрационная программа

Balls


Шаг интегрирования: dt = /1000

Гравитация: mg = ⋅ m ⋅ g0

Масса красного шара: Bmass =

Сколько шаров помещается по вертикали:

Конфигурация:


Термостат: T ⋅ T0 =
Разгон случайными скоростями
Термостат действует на: Внутреннее трение
T ≈

Количество частиц:
скорость обновления:
отладка:
График квадрата смещения от времени:

Средняя температура системы

Ссылки