Расчет определённого интеграла. Фролова Ксения. 6 курс — различия между версиями
(→Постановка задачи) |
(→Постановка задачи) |
||
Строка 1: | Строка 1: | ||
==Постановка задачи== | ==Постановка задачи== | ||
− | Необходимо вычислить определенный интеграл <math>\int^1_0x^2dx</math> | + | Необходимо вычислить определенный интеграл <math>\int^1_0x^2dx</math> с использованием средств параллельного программирования на основе MPI. |
+ | ==Реализация== | ||
+ | Для расчета указанного интеграла используется метод трапеций - метод численного интегрирования функции одной переменной, заключающийся в замене на каждом элементарном отрезке подинтегральной функции на многочлен первой степени, то есть линейную функцию. Площадь под графиком функции аппроксимируется прямоугольными трапециями. | ||
+ | Отрезок [a, b] (в данной задаче [0,1]) разбивается на заданное количество интервалов (в данной задаче n=100000000), и на каждом из элементарных отрезков применяется формула трапеций. Cуммирование даст составную формулу трапеций:<br> | ||
+ | <math>\int^b_a f(x)\,dx \approx \sum_{i=0}^{n-1} \frac{ f(x_i) + f(x_{i+1}) }{2} (x_{i+1} - x_{i}) </math> | ||
+ | При этом нам необходимо распределить заданное количество интервалов между определенным количеством процессов. На каждом полученном таким способом интервале процесс интегрирования осуществляется отдельным процессом, при этом в связи с использованием явной схемы соседние процессы должны обмениваться крайними значениями, полученными на предыдущем шаге, для выполнения следующего шага. Так, каждый процесс рассчитывает определенное количество интервалов по методу трапеций и обменивается информацией с соседними процессами. Суммируя результаты, полученные каждым отдельным процессом, мы получаем конечный результат. |
Версия 14:47, 17 января 2016
Постановка задачи
Необходимо вычислить определенный интеграл
с использованием средств параллельного программирования на основе MPI.Реализация
Для расчета указанного интеграла используется метод трапеций - метод численного интегрирования функции одной переменной, заключающийся в замене на каждом элементарном отрезке подинтегральной функции на многочлен первой степени, то есть линейную функцию. Площадь под графиком функции аппроксимируется прямоугольными трапециями.
Отрезок [a, b] (в данной задаче [0,1]) разбивается на заданное количество интервалов (в данной задаче n=100000000), и на каждом из элементарных отрезков применяется формула трапеций. Cуммирование даст составную формулу трапеций:
При этом нам необходимо распределить заданное количество интервалов между определенным количеством процессов. На каждом полученном таким способом интервале процесс интегрирования осуществляется отдельным процессом, при этом в связи с использованием явной схемы соседние процессы должны обмениваться крайними значениями, полученными на предыдущем шаге, для выполнения следующего шага. Так, каждый процесс рассчитывает определенное количество интервалов по методу трапеций и обменивается информацией с соседними процессами. Суммируя результаты, полученные каждым отдельным процессом, мы получаем конечный результат.