Расчет определённого интеграла. Фролова Ксения. 6 курс — различия между версиями

Материал из Department of Theoretical and Applied Mechanics
Перейти к: навигация, поиск
(Постановка задачи)
(Постановка задачи)
Строка 1: Строка 1:
 
==Постановка задачи==
 
==Постановка задачи==
Необходимо вычислить определенный интеграл <math>\int^1_0x^2dx</math>,с использованием средств параллельного программирования на основе MPI.
+
Необходимо вычислить определенный интеграл <math>\int^1_0x^2dx</math> с использованием средств параллельного программирования на основе MPI.
 +
==Реализация==
 +
Для расчета указанного интеграла используется метод трапеций - метод численного интегрирования функции одной переменной, заключающийся в замене на каждом элементарном отрезке подинтегральной функции на многочлен первой степени, то есть линейную функцию. Площадь под графиком функции аппроксимируется прямоугольными трапециями.
 +
Отрезок [a, b] (в данной задаче [0,1]) разбивается на заданное количество интервалов (в данной задаче n=100000000), и на каждом из элементарных отрезков применяется формула трапеций. Cуммирование даст составную формулу трапеций:<br>
 +
<math>\int^b_a f(x)\,dx \approx \sum_{i=0}^{n-1} \frac{ f(x_i) + f(x_{i+1}) }{2} (x_{i+1} - x_{i}) </math>
 +
При этом нам необходимо распределить заданное количество интервалов между определенным количеством процессов. На каждом полученном таким способом интервале процесс интегрирования осуществляется отдельным процессом, при этом в связи с использованием явной схемы соседние процессы должны обмениваться крайними значениями, полученными на предыдущем шаге, для выполнения следующего шага. Так, каждый процесс рассчитывает определенное количество интервалов по методу трапеций и обменивается информацией с соседними процессами. Суммируя результаты, полученные каждым отдельным процессом, мы получаем конечный результат.

Версия 14:47, 17 января 2016

Постановка задачи

Необходимо вычислить определенный интеграл [math]\int^1_0x^2dx[/math] с использованием средств параллельного программирования на основе MPI.

Реализация

Для расчета указанного интеграла используется метод трапеций - метод численного интегрирования функции одной переменной, заключающийся в замене на каждом элементарном отрезке подинтегральной функции на многочлен первой степени, то есть линейную функцию. Площадь под графиком функции аппроксимируется прямоугольными трапециями. Отрезок [a, b] (в данной задаче [0,1]) разбивается на заданное количество интервалов (в данной задаче n=100000000), и на каждом из элементарных отрезков применяется формула трапеций. Cуммирование даст составную формулу трапеций:

[math]\int^b_a f(x)\,dx \approx \sum_{i=0}^{n-1} \frac{ f(x_i) + f(x_{i+1}) }{2} (x_{i+1} - x_{i}) [/math]

При этом нам необходимо распределить заданное количество интервалов между определенным количеством процессов. На каждом полученном таким способом интервале процесс интегрирования осуществляется отдельным процессом, при этом в связи с использованием явной схемы соседние процессы должны обмениваться крайними значениями, полученными на предыдущем шаге, для выполнения следующего шага. Так, каждый процесс рассчитывает определенное количество интервалов по методу трапеций и обменивается информацией с соседними процессами. Суммируя результаты, полученные каждым отдельным процессом, мы получаем конечный результат.