Одномерное уравнение теплопроводности. Суранов Ян Сергеевич. 6 курс — различия между версиями
Материал из Department of Theoretical and Applied Mechanics
Ян (обсуждение | вклад) (→Постановка задачи) |
Ян (обсуждение | вклад) (→Явная схема с перешагиванием) |
||
Строка 17: | Строка 17: | ||
:<math>\frac{\partial T\left(x,t\right)}{\partial t} = a^2\frac{\partial^2 T\left(x,t\right)}{\partial x^2}</math> | :<math>\frac{\partial T\left(x,t\right)}{\partial t} = a^2\frac{\partial^2 T\left(x,t\right)}{\partial x^2}</math> | ||
− | Введем | + | Введем сетку <math>0 < x_i < 1</math> с шагом разбиения <math>Δx</math>. Шаг по времени назовем <math>Δt</math> |
− | Построим явную | + | Построим явную трехслойную схему: |
+ | :<math>{T_{i}^{n+1}} = {T_{i}^{n-1}}+\frac{2dt}{dx^2}\left(T_{i+1}^{n} - 2T_{i}^{n}+T_{i-1}^{n}\right)</math> | ||
+ | Где, <math>T_i</math> — значение температуры в <math>i</math>-ом узле. | ||
+ | Так как схема трехслойная, то вначале надо иметь уже вычисленные значения функции <math>{T_{i}^{n}}</math> на первом и нулевом слоях. | ||
+ | |||
+ | При n=0 значения функции <math>{T_{i}^{0}}</math> определяются из начальных условий. При значения функции <math>{T_{i}^{1}}</math> вычисляется по двухслойной схеме: | ||
:<math>\frac{T_i^{n+1}-T_i^{n}}{Δ t} = \frac{a^2}{Δx^2}\left(T_{i+1}^{n} - 2T_{i}^{n}+T_{i-1}^{n}\right)</math> | :<math>\frac{T_i^{n+1}-T_i^{n}}{Δ t} = \frac{a^2}{Δx^2}\left(T_{i+1}^{n} - 2T_{i}^{n}+T_{i-1}^{n}\right)</math> | ||
− | + | При значения функции определяются из краевых условий. | |
==Компьютерная реализация== | ==Компьютерная реализация== |
Версия 11:46, 14 декабря 2015
Содержание
Постановка задачи
Решается однородное уравнение теплопроводности на промежутке
С граничными условиями
и начальным распределением температуры
Реализация
Явная схема с перешагиванием
Задача содержит производную по времени первого порядка и производную по пространственной координате второго порядка. Запишем исходное уравнение в виде
Введем сетку
с шагом разбиения . Шаг по времени назовем Построим явную трехслойную схему:Где,
— значение температуры в -ом узле. Так как схема трехслойная, то вначале надо иметь уже вычисленные значения функции на первом и нулевом слоях.При n=0 значения функции
определяются из начальных условий. При значения функции вычисляется по двухслойной схеме:При значения функции определяются из краевых условий.
Компьютерная реализация
Скачать программу File:HeatEq_Yan.zip
Результаты
- При малом числе узлов в сетки, для данной многопроцессовой реализации, время расчета увеличивается.
- При увеличении числа процессов время расчета существенно сокращается, что делает целесообразным использование данного метода.