Одномерное уравнение теплопроводности. Суранов Ян Сергеевич. 6 курс — различия между версиями

Материал из Department of Theoretical and Applied Mechanics
Перейти к: навигация, поиск
(Новая страница: «Одномерное уравнение теплопроводности. Суранов Ян Сергеевич. 6 курс»)
 
Строка 1: Строка 1:
Одномерное уравнение теплопроводности. Суранов Ян Сергеевич. 6 курс
+
==Постановка задачи==
 +
[[File:Heat eqn.gif|thumb|Пример численного решения уравнения теплопроводности. Цветом и высотой поверхности передана температура данной точки.]]
 +
Решается однородное [https://ru.wikipedia.org/wiki/%D0%A3%D1%80%D0%B0%D0%B2%D0%BD%D0%B5%D0%BD%D0%B8%D0%B5_%D1%82%D0%B5%D0%BF%D0%BB%D0%BE%D0%BF%D1%80%D0%BE%D0%B2%D0%BE%D0%B4%D0%BD%D0%BE%D1%81%D1%82%D0%B8 уравнение теплопроводности] на промежутке <math>\left[a\ldots b\right]</math>
 +
:<math>\frac{\partial U\left(x,t\right)}{\partial t} - k^2\frac{\partial^2 U\left(x,t\right)}{\partial x^2} = f(x,t)</math>
 +
С граничными условиями
 +
:<math> \begin{cases}
 +
  U(a,t) = M1(t) \\
 +
  U(b,t) = M2(t)
 +
\end{cases}</math>
 +
и начальным распределением температуры
 +
:<math>U(x,0) = U0(x)</math>
 +
*Где :<math>f(x,t), U0(x), M1(t), M2(t)</math> - Известные функции
 +
 
 +
==Реализация==
 +
===Конечно-разностная схема===
 +
 
 +
Задача содержит производную по времени первого порядка и производную по пространственной координате второго порядка.
 +
Запишем исходное уравнение в виде
 +
:<math>\frac{\partial U\left(x,t\right)}{\partial t} = a^2\frac{\partial^2 U\left(x,t\right)}{\partial x^2}</math>
 +
 
 +
Введем равномерную сетку <math>0 < x_i < L</math> с шагом разбиения <math>Δx</math>. Шаг по времени назовем <math>Δt</math>
 +
Построим явную конечно-разностную схему:
 +
:<math>\frac{U_i^{n+1}-U_i^{n}}{Δ t} = \frac{a^2}{Δx^2}\left(U_{i+1}^{n} - 2U_{i}^{n}+U_{i-1}^{n}\right)</math>
 +
Где, <math>U_i</math> — значение температуры в <math>i</math>-ом узле.
 +
 
 +
==Полезные ссылки==
 +
[https://ru.wikipedia.org/wiki/%D0%A3%D1%80%D0%B0%D0%B2%D0%BD%D0%B5%D0%BD%D0%B8%D0%B5_%D1%82%D0%B5%D0%BF%D0%BB%D0%BE%D0%BF%D1%80%D0%BE%D0%B2%D0%BE%D0%B4%D0%BD%D0%BE%D1%81%D1%82%D0%B8 Уравнение теплопроводности]

Версия 20:54, 9 декабря 2015

Постановка задачи

Пример численного решения уравнения теплопроводности. Цветом и высотой поверхности передана температура данной точки.

Решается однородное уравнение теплопроводности на промежутке [math]\left[a\ldots b\right][/math]

[math]\frac{\partial U\left(x,t\right)}{\partial t} - k^2\frac{\partial^2 U\left(x,t\right)}{\partial x^2} = f(x,t)[/math]

С граничными условиями

[math] \begin{cases} U(a,t) = M1(t) \\ U(b,t) = M2(t) \end{cases}[/math]

и начальным распределением температуры

[math]U(x,0) = U0(x)[/math]
  • Где :[math]f(x,t), U0(x), M1(t), M2(t)[/math] - Известные функции

Реализация

Конечно-разностная схема

Задача содержит производную по времени первого порядка и производную по пространственной координате второго порядка. Запишем исходное уравнение в виде

[math]\frac{\partial U\left(x,t\right)}{\partial t} = a^2\frac{\partial^2 U\left(x,t\right)}{\partial x^2}[/math]

Введем равномерную сетку [math]0 \lt x_i \lt L[/math] с шагом разбиения [math]Δx[/math]. Шаг по времени назовем [math]Δt[/math] Построим явную конечно-разностную схему:

[math]\frac{U_i^{n+1}-U_i^{n}}{Δ t} = \frac{a^2}{Δx^2}\left(U_{i+1}^{n} - 2U_{i}^{n}+U_{i-1}^{n}\right)[/math]

Где, [math]U_i[/math] — значение температуры в [math]i[/math]-ом узле.

Полезные ссылки

Уравнение теплопроводности