Одномерное уравнение теплопроводности. Буй Ван Шань. 6 курс — различия между версиями

Материал из Department of Theoretical and Applied Mechanics
Перейти к: навигация, поиск
(Реализация MPI)
(Реализация MPI)
Строка 14: Строка 14:
 
* Данные для расчета
 
* Данные для расчета
 
:<math> \begin{cases}
 
:<math> \begin{cases}
   a=0;b=1
+
   a=0;b=1\\
   M1(0,t)=6t+0.887
+
   M1(0,t)=6t+0.887\\
   M2(t)=0.0907
+
   M2(t)=0.0907\\
   U0(x)=cos(x+0.48)
+
   U0(x)=cos(x+0.48)\\
   f(x,t)=0
+
   f(x,t)=0\\
 
   k=1
 
   k=1
 
  \end{cases}</math>
 
  \end{cases}</math>

Версия 02:45, 17 ноября 2015

Постановка задачи

Решается однородное уравнение теплопроводности на промежутке [math]\left[a\ldots b\right][/math]

[math]\frac{\partial U\left(x,t\right)}{\partial t} - k^2\frac{\partial^2 U\left(x,t\right)}{\partial x^2} = f(x,t)[/math]

С граничными условиями

[math] \begin{cases} U(a,t) = M1(t) \\ U(b,t) = M2(t) \end{cases}[/math]

и начальным распределением температуры

[math]U(x,0) = U0(x)[/math]
  • Где f(x,t), U0(x), M1(t), M2(t) - Известные функции

Реализация MPI

  • Данные для расчета
[math] \begin{cases} a=0;b=1\\ M1(0,t)=6t+0.887\\ M2(t)=0.0907\\ U0(x)=cos(x+0.48)\\ f(x,t)=0\\ k=1 \end{cases}[/math]

Результаты

  • Решение
    • 2 процесса

Result.PNG

    • 4 процесса

Result2.png

  • Погрешность вычисления
  • Зависимость скорости расчета от количества процессов при постоянных шагах вычисления
    • Шаг по пространстве dx = 0.0001
    • Шаг по времени dt = 0.000001

Processing time.PNG

Количество процессов Время рассчета (сек)
2 96.58
4 49.4
8 28.66
10 23.63
20 12.89
30 9.27
40 7.52

Заметим что при запуске больше количества процессов, скорость расчета быстро снижается