Перенос тепла в одномерных кристаллах — различия между версиями
Материал из Department of Theoretical and Applied Mechanics
(Новая страница: «Кафедра ТМ > Научный справочник > Механика > МДС > О…») |
|||
Строка 6: | Строка 6: | ||
=== Экспериментальное подтверждение аномального переноса тепла в одномерных структурах === | === Экспериментальное подтверждение аномального переноса тепла в одномерных структурах === | ||
+ | |||
+ | * Zhaohui Wang, Jeffrey A. Carter, Alexei Lagutchev, Yee Kan Koh, Nak-Hyun Seong, David G. Cahill, Dana D. Dlott. '''Ultrafast Flash Thermal Conductance of Molecular Chains.''' Science 10 August 2007: Vol. 317 no. 5839 pp. 787-790. [http://www.sciencemag.org/content/317/5839/787 Abs.] | ||
* C. W. Chang, D. Okawa, H. Garcia, A. Majumdar, and A. Zettl. '''Breakdown of Fourier’s Law in Nanotube Thermal Conductors.''' Phys. Rev. Lett. 101, 075903. 2008. [http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.101.075903 Abs.] | * C. W. Chang, D. Okawa, H. Garcia, A. Majumdar, and A. Zettl. '''Breakdown of Fourier’s Law in Nanotube Thermal Conductors.''' Phys. Rev. Lett. 101, 075903. 2008. [http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.101.075903 Abs.] | ||
Строка 11: | Строка 13: | ||
* Yang, N., Zhang, G., Li, B. '''Violation of Fourier's law and anomalous heat diffusion in silicon nanowires.''' Nano Today. Volume 5, Issue 2, April 2010, Pages 85-90. [http://www.sciencedirect.com/science/article/pii/S1748013210000228 Abs.] | * Yang, N., Zhang, G., Li, B. '''Violation of Fourier's law and anomalous heat diffusion in silicon nanowires.''' Nano Today. Volume 5, Issue 2, April 2010, Pages 85-90. [http://www.sciencedirect.com/science/article/pii/S1748013210000228 Abs.] | ||
− | * S. Shen, A. Henry, J. Tong, R. Zheng, G. Chen. '''Polyethylene nanofibres with very high thermal conductivities.''' Nat. Nanotechnol. 5, 251 (2010). | + | * S. Shen, A. Henry, J. Tong, R. Zheng, G. Chen. '''Polyethylene nanofibres with very high thermal conductivities.''' Nat. Nanotechnol. 5, 251 (2010). [http://www.nature.com/nnano/journal/v5/n4/full/nnano.2010.27.html Abs.] |
=== Теоретические исследования распространения тепла в одномерных кристаллах === | === Теоретические исследования распространения тепла в одномерных кристаллах === |
Версия 23:11, 12 июля 2015
Кафедра ТМ > Научный справочник > Механика > МДС > Одномерный кристалл > Перенос тепла
Перенос тепла — сложный и нетривиальный процесс, даже для простейших моделей одномерного кристалла. Как правило, не описывается классическим законом Фурье. Теоретически отклонения от закона теплопроводности Фурье отмечались давно, однако, в последние годы появились и экспериментальные подтверждения данного факта.
Публикации по теме
Экспериментальное подтверждение аномального переноса тепла в одномерных структурах
- Zhaohui Wang, Jeffrey A. Carter, Alexei Lagutchev, Yee Kan Koh, Nak-Hyun Seong, David G. Cahill, Dana D. Dlott. Ultrafast Flash Thermal Conductance of Molecular Chains. Science 10 August 2007: Vol. 317 no. 5839 pp. 787-790. Abs.
- C. W. Chang, D. Okawa, H. Garcia, A. Majumdar, and A. Zettl. Breakdown of Fourier’s Law in Nanotube Thermal Conductors. Phys. Rev. Lett. 101, 075903. 2008. Abs.
- Yang, N., Zhang, G., Li, B. Violation of Fourier's law and anomalous heat diffusion in silicon nanowires. Nano Today. Volume 5, Issue 2, April 2010, Pages 85-90. Abs.
- S. Shen, A. Henry, J. Tong, R. Zheng, G. Chen. Polyethylene nanofibres with very high thermal conductivities. Nat. Nanotechnol. 5, 251 (2010). Abs.
Теоретические исследования распространения тепла в одномерных кристаллах
- Z. Rieder, J. L. Lebowitz and E. Lieb. Properties of a Harmonic Crystal in a Stationary Nonequilibrium State. J. Math. Phys. 8, 1073 (1967). Abstract. (Впервые показано, что для гармонической цепочки тепловой поток не зависит от количества частиц, а равновесная температура везде, кроме окрестности краев, равна полусумме температур краевых точек).
- Hiroshi Nakazawa. On the Lattice Thermal Conduction. Prog. Theor. Phys. Supplement (1970), 45, 231-262. (Результаты Rieder at al (1967) аналитически распространяются на другие граничные условия и пространственный гармонический кристалл, для ангармонической цепочки численно показано, что тепловое сопротивление растет с увеличением нелинейности).
- Baowen Li, Lei Wang, and Giulio Casati. Thermal Diode: Rectification of Heat Flux. Phys. Rev. Lett. 93, 184301 (2004) [4 pages]. (На примере контакта двух цепочек с различной нелинейностью показана осуществимость теплового диода — устройства, работающего как тепловой проводник в одну и изолятор в другую сторону).
- Zonghua Liu, Baowen Li. Heat conduction in a 1D harmonic chain with three dimensional vibrations (26 Jun 2008) arXiv:0806.4224 (Показано, что теплопроводность в гармонической цепочке при пространственных вибрациях зависит от постоянной решетки, чего не наблюдается при одномерных вибрациях).
- D. Roy, A. Dhar. Heat Transport in Ordered Harmonic Lattices. J Stat Phys (2008) 131: 535–541. (Получена точная формула для теплового потока в гармонической цепочке, в частных случаях воспроизводящая результаты Rieder et al. (1967) и Nakazawa (1970), исследуется также квантовый случай).
- Pereira, E., Lemos, H.C.F., Ávila, R.R. Ingredients of thermal rectification: The case of classical and quantum self-consistent harmonic chains of oscillators. Phys. Rev. E 84, 061135 (2011) [7 pages]. (Для гармонической цепочки с распределенными тепловыми резервуарами показано, что термическая ректификация отсутствует в классическом и присутствует в квантовом случае).
- V. Kannan, A. Dhar, and J. L. Lebowitz. Nonequilibrium stationary state of a harmonic crystal with alternating masses. PRE 85, 041118 (2012). (Аналитически и численно рассматривается гармоническая цепочка, в которой четные и нечетные частицы имеют разные массы. Показано, что при наличии теплового потока через систему частицы разной массы имеют разные температуры даже при . Причем для четного числа частиц горячее оказываются более тяжелые частицы, для нечетного — наоборот).
- А.М. Кривцов. Колебания энергий в одномерном кристалле. Доклады Академии Наук. 2014, том 458, № 3, 279-281. (Скачать pdf: 180 Kb) English version: Anton M. Krivtsov. Energy Oscillations in a One-Dimensional Crystal // Doklady Akademii Nauk. Doklady Physics, 2014, Vol. 59, No. 9, pp. 427–430. (Скачать pdf: 162 Kb) (Аналитически описан процесс выхода на тепловое равновесие для пространственно-однородного состояния кристалла).
- А.М. Кривцов. Распространение тепла в бесконечном одномерном гармоническом кристалле. Доклады Академии Наук. 2015, том 464, № 2. (Аналитически получены аналоги уравнения теплопроводности и закона Фурье).