Сиситема груза и блоков — различия между версиями
Материал из Department of Theoretical and Applied Mechanics
Sizova (обсуждение | вклад) (→Решение) |
Sizova (обсуждение | вклад) (→Решение) |
||
Строка 41: | Строка 41: | ||
где | где | ||
<math> a = M_1+M_2+3M_3, b = l+y+r, c=L-l-y-\frac{\pi r}{2}. </math> | <math> a = M_1+M_2+3M_3, b = l+y+r, c=L-l-y-\frac{\pi r}{2}. </math> | ||
+ | Подставим <math> N(y) </math> в уравнение (1): | ||
+ | <math> avdv=M_1gdy+ \frac{M_2}{L}bgdy-\frac{f_k}{r}\frac{\dot{v}ar}{c-f_k}dy+\frac{f_K}{r}\frac{M_1gr}{c-f_K}dy+\frac{f_K}{r}\frac{M_2gbr}{L(c-f_K)}dy-\frac{f_K}{r}\frac{M_2gc^2}{L(c-f_K)2}dy-\frac{f_K}{r}\frac{M_3gc}{c-f_k}dy. </math> |
Версия 11:18, 5 июня 2015
Задача: С помощью языка программирования JavaScript смоделировать систему блоков с грузом.
Решение
Условия задачи:
Груз массы
подвешен на нерастяжимом однородном тросе длины , навитом на цилиндрический барабан с горизонтальной осью вращения. Момент инерции барабана относительно оси вращения , радиус барабана , масса единицы длины каната . Определить скорость груза в момент, когда длина свисающей части каната равна если в начальный момент скорость груза , а длина свисающей части каната была равна ; трением на оси барабана, толщиной троса и изменением потенциальной энергии троса, навитого на барабан, пренебречь.Решение: Воспользуемся теоремой об изменении кинетической энергии системы в дифференциальной форме:
Кинетическая энергия системы В вычислениях учли отсутствие скольжения катка (точка касания - мгновенный центр скоростей катка). Дифференциал кинетической энергии Суммарная элементарная работа внутренних и внешних сил сводится в работе силы тяжести груза : работе силы тяжести каната: и работе силы трения качения катка : В результате уравнение принимает вид Для определения нормальной реакции катка Т(н) воспользуемся теоремой об изменении кинетического момента всей системы относительно оси вращения блока : Здесь масса горизонтального участка каната масса участка каната, облегающего блок , масса вертикального участка каната Центр масс горизонтального участка каната - точка , причем Центр масс каната, облегающего блок - точка , такая, что После преобразований получим: Из полученного уравнения (2) выразим : где Подставим в уравнение (1):