Сиситема груза и блоков — различия между версиями
Материал из Department of Theoretical and Applied Mechanics
Sizova (обсуждение | вклад) (→Решение) |
Sizova (обсуждение | вклад) (→Решение) |
||
Строка 23: | Строка 23: | ||
В результате уравнение принимает вид | В результате уравнение принимает вид | ||
<math> (M_1+M_2+2M-3)vdv=M_1gdy+\frac{M_2}{L}(l+r+y)gdy-f_KN(y)\frac{dy}/{r}. \qquad (1) </math> | <math> (M_1+M_2+2M-3)vdv=M_1gdy+\frac{M_2}{L}(l+r+y)gdy-f_KN(y)\frac{dy}/{r}. \qquad (1) </math> | ||
− | Для определения нормальной реакции катка Т(н) воспользуемся теоремой об изменении кинетического момента всей системы относительно оси вращения блока <math> B <math>: | + | Для определения нормальной реакции катка Т(н) воспользуемся теоремой об изменении кинетического момента всей системы относительно оси вращения блока <math> B </math>: |
<math> \frac{d}{dt}(K^{(A)}_{Bz}+K^{(B)}_{Bz}+K^{(C)}_{Bz}+K^{(каната)}_{Bz})=\Sigma M_{Bz}(\vec{F^{(e)}_k})\Rightarrow \frac{d}{dt}\left [ M_1vr+\frac{M_3r^2}{2}*\frac{v}{r}+ (M_3vr+\frac{M_3r^2}{2}*\frac{v}{r})+M_2vr\right ] = M_1gr+M_{23}gr+M{22}gBS_2\cos(\frac{\pi}{4})-M_{21}gS_1K-M_3g2S_1K+N2S_1K-M_k </math> | <math> \frac{d}{dt}(K^{(A)}_{Bz}+K^{(B)}_{Bz}+K^{(C)}_{Bz}+K^{(каната)}_{Bz})=\Sigma M_{Bz}(\vec{F^{(e)}_k})\Rightarrow \frac{d}{dt}\left [ M_1vr+\frac{M_3r^2}{2}*\frac{v}{r}+ (M_3vr+\frac{M_3r^2}{2}*\frac{v}{r})+M_2vr\right ] = M_1gr+M_{23}gr+M{22}gBS_2\cos(\frac{\pi}{4})-M_{21}gS_1K-M_3g2S_1K+N2S_1K-M_k </math> | ||
+ | Здесь масса горизонтального участка каната | ||
+ | <math> M_{21}=\frac{M_2}{L}(L-l-y-\frac{\pi r}{2}); </math> | ||
+ | масса участка каната, облегающего блок <math> B </math>, | ||
+ | <math> M_{22}=\frac{M_2}{L} \frac{\pi r}{2}; </math> | ||
+ | масса вертикального участка каната | ||
+ | <math> M_{23}=\frac{M_3}{L}(l+y). </math> | ||
+ | Центр масс горизонтального участка каната - точка <math> S_1 </math>, причем | ||
+ | <math> S_1K=\frac{1}{2}(L-l-y- \frac{\pi r}{2}). </math> |
Версия 10:57, 5 июня 2015
Задача: С помощью языка программирования JavaScript смоделировать систему блоков с грузом.
Решение
Условия задачи:
Груз массы
подвешен на нерастяжимом однородном тросе длины , навитом на цилиндрический барабан с горизонтальной осью вращения. Момент инерции барабана относительно оси вращения , радиус барабана , масса единицы длины каната . Определить скорость груза в момент, когда длина свисающей части каната равна если в начальный момент скорость груза , а длина свисающей части каната была равна ; трением на оси барабана, толщиной троса и изменением потенциальной энергии троса, навитого на барабан, пренебречь.Решение: Воспользуемся теоремой об изменении кинетической энергии системы в дифференциальной форме:
Кинетическая энергия системы В вычислениях учли отсутствие скольжения катка (точка касания - мгновенный центр скоростей катка). Дифференциал кинетической энергии Суммарная элементарная работа внутренних и внешних сил сводится в работе силы тяжести груза : работе силы тяжести каната: и работе силы трения качения катка : В результате уравнение принимает вид Для определения нормальной реакции катка Т(н) воспользуемся теоремой об изменении кинетического момента всей системы относительно оси вращения блока : Здесь масса горизонтального участка каната масса участка каната, облегающего блок , масса вертикального участка каната Центр масс горизонтального участка каната - точка , причем