КП: Кинематика кривошипно-шатунного механизма — различия между версиями
Влад (обсуждение | вклад) (→Решение) |
Влад (обсуждение | вклад) (→Решение) |
||
Строка 85: | Строка 85: | ||
<br> <math> \omega=\frac{\mathrm{d\beta} }{\mathrm{d} t}=\frac{\mathrm{d\beta} }{\mathrm{d} \varphi}\frac{\mathrm{d\varphi} }{\mathrm{d} t}=\omega\frac{\mathrm{d\beta} }{\mathrm{d} t} </math> | <br> <math> \omega=\frac{\mathrm{d\beta} }{\mathrm{d} t}=\frac{\mathrm{d\beta} }{\mathrm{d} \varphi}\frac{\mathrm{d\varphi} }{\mathrm{d} t}=\omega\frac{\mathrm{d\beta} }{\mathrm{d} t} </math> | ||
<br> Продифференцировав выражение (*) как | <br> Продифференцировав выражение (*) как | ||
− | уравнение с разделенными переменными, имеем | + | уравнение с разделенными переменными, имеем <math> cos\beta d\beta=\lambda cos\varphi d \varphi </math>, |
+ | <br> откуда <math> \frac{d\beta}{d\varphi}=\lambda\frac{cos \varphi}{cos \beta } </math> | ||
+ | <br> <math> \omega = \omega \lambda\frac{cos \varphi}{cos \beta } = \frac{\omega \lambda cos \varphi}{\sqrt{1-\lambda^2 sin^2 \varphi}}\approx \omega \lambda cos \varphi </math> | ||
− | '''Угловое ускорение шатуна''' определяется путем дифференцирования по времени функции угловой скорости его: | + | <br> '''Угловое ускорение шатуна''' определяется путем дифференцирования по времени функции угловой скорости его: |
<br> <math> \varepsilon =\frac{\mathrm{d\omega} }{\mathrm{d} t}=\frac{\mathrm{d\omega} }{\mathrm{d} \varphi}*\frac{\mathrm{d\varphi} }{\mathrm{d} t}=-\frac{\omega^2\lambda (1-\lambda^2)}{1-\lambda^2sin^2\varphi)^{3/2}}sin\varphi\approx -\omega^2\lambda sin\varphi </math> | <br> <math> \varepsilon =\frac{\mathrm{d\omega} }{\mathrm{d} t}=\frac{\mathrm{d\omega} }{\mathrm{d} \varphi}*\frac{\mathrm{d\varphi} }{\mathrm{d} t}=-\frac{\omega^2\lambda (1-\lambda^2)}{1-\lambda^2sin^2\varphi)^{3/2}}sin\varphi\approx -\omega^2\lambda sin\varphi </math> |
Версия 10:21, 28 мая 2014
А.М. Кривцов > Теоретическая механика > Курсовые проекты 2014 > Кинематика кривошипно-шатунного механизма
Курсовой проект по Теоретической механике
Исполнитель: Cолодовников Владислав
Группа: 08 (23604)
Семестр: весна 2014
Аннотация проекта
Данный проект посвящен Кинематическому анализу движения кривошипно-шатунного механизма в двигателе внутреннего сгорания. Кривошипно-шатунный механизм (КШМ) предназначен для преобразования возвратно-поступательного движения поршня во вращательное движение (например, во вращательное движение коленчатого вала в двигателях внутреннего сгорания), и наоборот.
Постановка задачи
- Установление законов движения поршня и шатуна при известном законе движения кривоши-
па.
- Составить уравнения перемещения, ускорения и скорости поршня и шатуна
Постановка задачи
Дан центральный кривошипно-шатунный механизм, у которого ось цилиндра пересекается с осью коленчатого вала.
Примем следующие обозначения:
φ — угол поворота кривошипа в рассматриваемый момент времени
При φ =0 поршень занимает крайнее положение А1 – ВМТ
При φ =180° поршень занимает положение A2 – НМТ
β – угол отклонения оси шатуна
ω= πn/30 – угловая скорость вращения кривошипа
r = OB – радиус кривошипа
L = AB — длина шатуна
λ = r/L – безразмерный параметр КШМ
S = 2r = A1A2 — полный ход поршня
Решение
Перемещение поршня:
При повороте кривошипа на угол φ перемещение поршня от его начального положения в ВМТ определяется отрезком АА1 и равно: Sп = AA1 = A1O− AO = A1O − (OC + CA) .
Следовательно,
т.к.
но т.к. , то
- это выражение описывает перемещение поргня в зависимости от угла поворота кривошипа и геометрических размеров КШМ
Скорость поршня:
Выражение для определения скорости перемещения поршня как функцию угла поворота кривошипа можно получить путем дифференцирования по времени левой и правой части уравнения движения кривошипно-шатунного механизма.
,
где - скорость перемещения поршня; - угловая скорость вращения кривошипа.
Следовательно имеем:
Ускорение поршня:
Выражение для определения ускорения поршня
можно найти путем дифференцирования по времени выражения для скорости поршня:
,
откуда
Кинематика шатуна:
При вращении кривошипа шатун совершает сложное плоскопарал-
лельное движение, которое можно рассматривать как сумму поступатель-
ного движения вместе с поршнем (с точкой А на рис. 9), кинематика кото-
рого рассмотрена, и углового движения относительно оси поршневого
пальца, т. е. точки А.
Угловое перемещение шатуна шатуна относительно
оси цилиндра определяется из уравнения:
(*):
Из последнего уравнения видно, что наибольшее отклонение шатуна при и ,что соответствует
Продифференцировав выражение (*) как
уравнение с разделенными переменными, имеем
Угловая скорость шатуна ωш определяется
путем дифференцирования по времени функции
углового перемещения:
Продифференцировав выражение (*) как
уравнение с разделенными переменными, имеем ,
откуда
Угловое ускорение шатуна определяется путем дифференцирования по времени функции угловой скорости его: