Одномерный кристалл — различия между версиями
Материал из Department of Theoretical and Applied Mechanics
Строка 5: | Строка 5: | ||
=== Теплопроводность в одномерных кристаллах === | === Теплопроводность в одномерных кристаллах === | ||
− | * Z. Rieder, J. L. Lebowitz and E. Lieb. '''Properties of a Harmonic Crystal in a Stationary Nonequilibrium State.''' J. Math. Phys. 8, 1073 (1967). [http://scitation.aip.org/content/aip/journal/jmp/8/5/10.1063/1.1705319 Abstract]. ''(Впервые показано, что для гармонической цепочки | + | * Z. Rieder, J. L. Lebowitz and E. Lieb. '''Properties of a Harmonic Crystal in a Stationary Nonequilibrium State.''' J. Math. Phys. 8, 1073 (1967). [http://scitation.aip.org/content/aip/journal/jmp/8/5/10.1063/1.1705319 Abstract]. ''(Впервые показано, что для гармонической цепочки тепловой поток не зависит от количества частиц, а равновесная температура везде, кроме окрестности краев, равна полусумме температур краевых точек).'' |
* Hiroshi Nakazawa. [http://ptps.oxfordjournals.org/content/45/231.abstract?sid=59ff5cd6-c8c3-4e9d-9e4b-263cffb39a40 On the Lattice Thermal Conduction]. Prog. Theor. Phys. Supplement (1970), 45, 231-262. ''(Результаты Rieder at al (1967) аналитически распространяются на другие граничные условия и пространственный гармонический кристалл, для ангармонической цепочки численно показано, что тепловое сопротивление растет с увеличением нелинейности).'' | * Hiroshi Nakazawa. [http://ptps.oxfordjournals.org/content/45/231.abstract?sid=59ff5cd6-c8c3-4e9d-9e4b-263cffb39a40 On the Lattice Thermal Conduction]. Prog. Theor. Phys. Supplement (1970), 45, 231-262. ''(Результаты Rieder at al (1967) аналитически распространяются на другие граничные условия и пространственный гармонический кристалл, для ангармонической цепочки численно показано, что тепловое сопротивление растет с увеличением нелинейности).'' | ||
Строка 29: | Строка 29: | ||
== Терминология == | == Терминология == | ||
+ | |||
+ | * <math>N</math> — полное число частиц в кристалле. | ||
* '''Nonequilibrium steady states''' — '''неравновесные стационарные состояния''': состояния термодинамической системы, при котором присутствуют тепловые потоки, однако все термодинамические величины не зависят от времени. | * '''Nonequilibrium steady states''' — '''неравновесные стационарные состояния''': состояния термодинамической системы, при котором присутствуют тепловые потоки, однако все термодинамические величины не зависят от времени. | ||
Строка 35: | Строка 37: | ||
* '''Thermodynamic limit''' — '''термодинамический предел''': предел при стремлении числа частиц к бесконечности (<math>N\to\infty</math>). | * '''Thermodynamic limit''' — '''термодинамический предел''': предел при стремлении числа частиц к бесконечности (<math>N\to\infty</math>). | ||
+ | |||
+ | |||
+ | [[Category: Механика дискретных сред]] |
Версия 16:41, 1 февраля 2014
Одномерный кристалл — цепочка взаимодействующих частиц — простейшая модель для исследования общих свойств дискретных сред
Содержание
Публикации по теме
Теплопроводность в одномерных кристаллах
- Z. Rieder, J. L. Lebowitz and E. Lieb. Properties of a Harmonic Crystal in a Stationary Nonequilibrium State. J. Math. Phys. 8, 1073 (1967). Abstract. (Впервые показано, что для гармонической цепочки тепловой поток не зависит от количества частиц, а равновесная температура везде, кроме окрестности краев, равна полусумме температур краевых точек).
- Hiroshi Nakazawa. On the Lattice Thermal Conduction. Prog. Theor. Phys. Supplement (1970), 45, 231-262. (Результаты Rieder at al (1967) аналитически распространяются на другие граничные условия и пространственный гармонический кристалл, для ангармонической цепочки численно показано, что тепловое сопротивление растет с увеличением нелинейности).
- Baowen Li, Lei Wang, and Giulio Casati. Thermal Diode: Rectification of Heat Flux. Phys. Rev. Lett. 93, 184301 (2004) [4 pages]. (На примере контакта двух цепочек с различной нелинейностью показана осуществимость теплового диода — устройства, работающего как тепловой проводник в одну и изолятор в другую сторону).
- Zonghua Liu, Baowen Li. Heat conduction in a 1D harmonic chain with three dimensional vibrations (26 Jun 2008) arXiv:0806.4224 (Показано, что теплопроводность в гармонической цепочке при пространственных вибрациях зависит от количества частиц, чего не наблюдается при одномерных вибрациях).
- D. Roy, A. Dhar. Heat Transport in Ordered Harmonic Lattices. J Stat Phys (2008) 131: 535–541. (Получена точная формула для теплового потока в гармонической цепочке, в частных случаях воспроизводящая результаты Rieder et al. (1967) и Nakazawa (1970), исследуется также квантовый случай).
- Pereira, E., Lemos, H.C.F., Ávila, R.R. Ingredients of thermal rectification: The case of classical and quantum self-consistent harmonic chains of oscillators. Phys. Rev. E 84, 061135 (2011) [7 pages]. (Для гармонической цепочки показано, что тепловой поток не зависит от градиента температуры в классическом и зависит в квантовом случае).
- V. Kannan, A. Dhar, and J. L. Lebowitz. Nonequilibrium stationary state of a harmonic crystal with alternating masses. PRE 85, 041118 (2012). (Аналитически и численно рассматривается гармоническая цепочка, в которой четные и нечетные частицы имеют разные массы. Показано, что при наличии теплового потока через систему частицы разной массы имеют разные температуры даже при . Причем для четного числа частиц горячее более тяжелые частицы, для нечетного — наоборот).
Другие вопросы
- Contribution to the Theory of Linear Chains. Oxford Journals. Progress of Theoretical Physics Supp. Volume 36, February 1966.
- А.С.Ковалев, О.В.Усатенко, О.А.Чубыкало. Устойчивость высокочастотных самолокализованных колебаний в упругих ангармонических цепочках. ФТТ, 1993, том 35, выпуск 03.
- Wierling, A. Dynamic structure factor of linear harmonic chain - A recurrence relation approach. European Physical Journal B. Volume 85, Issue 1, January 2012, Article number 20.
Терминология
- — полное число частиц в кристалле.
- Nonequilibrium steady states — неравновесные стационарные состояния: состояния термодинамической системы, при котором присутствуют тепловые потоки, однако все термодинамические величины не зависят от времени.
- Thermal rectification — тепловое разделение (ректификация).
- Thermodynamic limit — термодинамический предел: предел при стремлении числа частиц к бесконечности ( ).