Моделирование динамики толпы в областях со сложной геометрией — различия между версиями

Материал из Department of Theoretical and Applied Mechanics
Перейти к: навигация, поиск
Строка 28: Строка 28:
 
<math>p = -\frac{1}{d}tr(\underline{\underline{\tau}}) = -\frac{1}{2Vd}\sum_{\alpha}A_\alpha \cdot F_\alpha</math>
 
<math>p = -\frac{1}{d}tr(\underline{\underline{\tau}}) = -\frac{1}{2Vd}\sum_{\alpha}A_\alpha \cdot F_\alpha</math>
  
[[Файл: MDC_particle_space.png|150px|thumb|right|Расчет собственного пространства частицы]]
+
где d – размерность задачи (в нашем случае d = 2),
где d – размерность задачи (в нашем случае d = 2), Fα - воздействие на частицу от окружающих её частиц α, Aα – расстояние от рассчитываемой частицы до окружающих её частиц, V – собственное пространство частицы (площадь многоугольника, построенного на половинах расстояний до ближайших частиц)  
+
 
 +
Fα - воздействие на частицу от окружающих её частиц α,
 +
 
 +
Aα – расстояние от рассчитываемой частицы до окружающих её частиц,
 +
 
 +
V – собственное пространство частицы (площадь многоугольника, построенного на половинах расстояний до ближайших частиц)  
 +
 
 +
[[Файл: MDC_particle_space.png|150px]]
  
 
----
 
----
Строка 36: Строка 43:
 
Для визуализации давлений, действующих на частицу, используется цвет этой частицы – чем больше давление, тем больше смещение к красному концу спектра  
 
Для визуализации давлений, действующих на частицу, используется цвет этой частицы – чем больше давление, тем больше смещение к красному концу спектра  
  
 +
[[Файл: MDC_demo.png|150px|thumb|right|Режим демонстрации]]
 +
Также есть режим демонстрации. В этом режиме вместо сферы используется модель человека, взятая с сайта 3dmodelfree.com. Шаги модели анимированы с использованием системы 3Ds Max, а повороты и скорость шага смоделированы с помощью специально разработанной программной системы визуализации.
 +
 +
== Сбор результатов расчетов ==
 +
 +
После каждого расчета полученные в ходе расчета данные записываются в файл результатов.
 +
 +
Программа может последовательно изменять какие-либо параметры начальной системы – например, можно задать начальное количество частиц – 30, конечное – 60 и шаг – 10. Тогда в автоматическом режиме будут посчитаны системы для 30, 40, 50 и 60 частиц, и после каждого расчета в файл результатов будут добавлены результаты эксперимента (время, затраченное частицами на «выход из комнаты», давления, возникающие в системе.) и его начальные условия. Таким же образом можно изменять и другие параметры – ширину прохода, количество расчетов одной системы, и др.
 +
 +
Для ускорения расчета ресурсоемких систем сделан режим запуска программы без визуализации, также предполагается сделать запись каждого шага в файл, чтобы можно было подробнее рассматривать шаги решения уже рассчитанной системы.
 +
 +
== Результаты ==
 +
 +
'''I. Время прохождения частиц в зависимости от начального положения.'''
 +
 +
Проведен ряд экспериментов, в ходе которых установлено, что отдельные частицы, находящиеся в точках A и D (см. рисунок), достигают прохода примерно на 25-30% быстрее, чем частицы, находящиеся в точках B и C.
 +
 +
[[Файл: MDC_experiment.png]]
 +
 +
Данные результаты близки к результатам исследований, проведенных [[Денисова Вита|В. А. Денисовой]] в работе [[Денисова Вита|«Моделирование социальных процессов»]], где был проведен и снят на видеокамеру ряд экспериментов у метро «Василеостровская»
 +
 +
----
 +
 +
'''II. Время прохождения частиц в зависимости от геометрии прохода.'''
 +
 +
Проведены эксперименты, измеряющие зависимость скорости преодоления частицами прохода в зависимости от геометрии прохода. Единицей измерения времени в данном эксперименте взят шаг интегрирования N. В качестве изменяемой величины геометрии прохода взят угол наклона α стенок у прохода.
 +
 +
<gallery widths=250px heights=153px perrow=3>
 +
Файл: MDC_geom_45.png|Геометрия при α = 45°
 +
Файл: MDC_geom_-25.png|Геометрия при α = -25°
 +
</gallery>
  
 
[[MDCrowd_K1|Конфигурация с бортиками]]
 
[[MDCrowd_K1|Конфигурация с бортиками]]

Версия 01:48, 7 апреля 2013

Введение

В работе исследуются способы более оптимальной организации движения людей, особенно в условиях паники – ведь в таком случае появляется большой риск получения людьми увечий вследствие увеличения «давления» в толпе.

Актуальность данной проблемы подтверждается, например, событиями в 2010 году в Дуйсбурге на фестивале «Love Parade», в ходе которого образовалась давка, в результате которой погиб 21 человек, и было ранено около 500 человек.

Цель

Цель работы – смоделировать и исследовать движение толпы при различных условиях, найти лучшие способы организации движения в таких местах, как проход в метрополитен, фойе театра, проход в концертный зал, и в других местах, предполагающий переход большого количества людей через некий узкий проём.

Реализация

Векторное поле модели

Для моделирования данной задачи используется программа, написанная на языке Java с использованием библиотеки OpenGL. Для описания взаимодействия частиц (людей) используется положительная часть потенциала Леннарда-Джонса – частицы отталкиваются друг от друга, но не притягиваются. Чтобы смоделировать стремление людей попасть в определенную область – на моделирующей области задано векторное поле сил, устремляющее частицу к «выходу»


Графическая составляющая программы

Для более наглядного отображения результатов моделирования разработаны средства визуализации, позволяющие отобразить достаточное количество частиц и требуемую геометрию области.

Для оценки ситуации измеряются две величины – время прохождения частиц через отверстие, и давление, возникающее в группе частиц. Требуется достичь минимального времени, однако при этом давление не должно превышать некоторого критического значения – чтобы максимально снизить риск травмирования людей в толпе.

Для расчета давления в системе, используется формула из главы «Техника моделирования» книги А. М. Кривцова «Деформирование и разрушение твердых тел с микроструктурой».

[math]\underline{\underline{\tau}} = -\frac{1}{2V}\sum_{\alpha}A_\alpha F_\alpha[/math]

[math]p = -\frac{1}{d}tr(\underline{\underline{\tau}}) = -\frac{1}{2Vd}\sum_{\alpha}A_\alpha \cdot F_\alpha[/math]

где d – размерность задачи (в нашем случае d = 2),

Fα - воздействие на частицу от окружающих её частиц α,

Aα – расстояние от рассчитываемой частицы до окружающих её частиц,

V – собственное пространство частицы (площадь многоугольника, построенного на половинах расстояний до ближайших частиц)

MDC particle space.png


Визуализация давления на частицы

Для визуализации давлений, действующих на частицу, используется цвет этой частицы – чем больше давление, тем больше смещение к красному концу спектра

Режим демонстрации

Также есть режим демонстрации. В этом режиме вместо сферы используется модель человека, взятая с сайта 3dmodelfree.com. Шаги модели анимированы с использованием системы 3Ds Max, а повороты и скорость шага смоделированы с помощью специально разработанной программной системы визуализации.

Сбор результатов расчетов

После каждого расчета полученные в ходе расчета данные записываются в файл результатов.

Программа может последовательно изменять какие-либо параметры начальной системы – например, можно задать начальное количество частиц – 30, конечное – 60 и шаг – 10. Тогда в автоматическом режиме будут посчитаны системы для 30, 40, 50 и 60 частиц, и после каждого расчета в файл результатов будут добавлены результаты эксперимента (время, затраченное частицами на «выход из комнаты», давления, возникающие в системе.) и его начальные условия. Таким же образом можно изменять и другие параметры – ширину прохода, количество расчетов одной системы, и др.

Для ускорения расчета ресурсоемких систем сделан режим запуска программы без визуализации, также предполагается сделать запись каждого шага в файл, чтобы можно было подробнее рассматривать шаги решения уже рассчитанной системы.

Результаты

I. Время прохождения частиц в зависимости от начального положения.

Проведен ряд экспериментов, в ходе которых установлено, что отдельные частицы, находящиеся в точках A и D (см. рисунок), достигают прохода примерно на 25-30% быстрее, чем частицы, находящиеся в точках B и C.

MDC experiment.png

Данные результаты близки к результатам исследований, проведенных В. А. Денисовой в работе «Моделирование социальных процессов», где был проведен и снят на видеокамеру ряд экспериментов у метро «Василеостровская»


II. Время прохождения частиц в зависимости от геометрии прохода.

Проведены эксперименты, измеряющие зависимость скорости преодоления частицами прохода в зависимости от геометрии прохода. Единицей измерения времени в данном эксперименте взят шаг интегрирования N. В качестве изменяемой величины геометрии прохода взят угол наклона α стенок у прохода.

Конфигурация с бортиками