Моделирование динамики толпы в областях со сложной геометрией — различия между версиями
Денис (обсуждение | вклад) |
Денис (обсуждение | вклад) |
||
Строка 28: | Строка 28: | ||
<math>p = -\frac{1}{d}tr(\underline{\underline{\tau}}) = -\frac{1}{2Vd}\sum_{\alpha}A_\alpha \cdot F_\alpha</math> | <math>p = -\frac{1}{d}tr(\underline{\underline{\tau}}) = -\frac{1}{2Vd}\sum_{\alpha}A_\alpha \cdot F_\alpha</math> | ||
− | + | где d – размерность задачи (в нашем случае d = 2), | |
− | где d – размерность задачи (в нашем случае d = 2), Fα - воздействие на частицу от окружающих её частиц α, Aα – расстояние от рассчитываемой частицы до окружающих её частиц, V – собственное пространство частицы (площадь многоугольника, построенного на половинах расстояний до ближайших частиц) | + | |
+ | Fα - воздействие на частицу от окружающих её частиц α, | ||
+ | |||
+ | Aα – расстояние от рассчитываемой частицы до окружающих её частиц, | ||
+ | |||
+ | V – собственное пространство частицы (площадь многоугольника, построенного на половинах расстояний до ближайших частиц) | ||
+ | |||
+ | [[Файл: MDC_particle_space.png|150px]] | ||
---- | ---- | ||
Строка 36: | Строка 43: | ||
Для визуализации давлений, действующих на частицу, используется цвет этой частицы – чем больше давление, тем больше смещение к красному концу спектра | Для визуализации давлений, действующих на частицу, используется цвет этой частицы – чем больше давление, тем больше смещение к красному концу спектра | ||
+ | [[Файл: MDC_demo.png|150px|thumb|right|Режим демонстрации]] | ||
+ | Также есть режим демонстрации. В этом режиме вместо сферы используется модель человека, взятая с сайта 3dmodelfree.com. Шаги модели анимированы с использованием системы 3Ds Max, а повороты и скорость шага смоделированы с помощью специально разработанной программной системы визуализации. | ||
+ | |||
+ | == Сбор результатов расчетов == | ||
+ | |||
+ | После каждого расчета полученные в ходе расчета данные записываются в файл результатов. | ||
+ | |||
+ | Программа может последовательно изменять какие-либо параметры начальной системы – например, можно задать начальное количество частиц – 30, конечное – 60 и шаг – 10. Тогда в автоматическом режиме будут посчитаны системы для 30, 40, 50 и 60 частиц, и после каждого расчета в файл результатов будут добавлены результаты эксперимента (время, затраченное частицами на «выход из комнаты», давления, возникающие в системе.) и его начальные условия. Таким же образом можно изменять и другие параметры – ширину прохода, количество расчетов одной системы, и др. | ||
+ | |||
+ | Для ускорения расчета ресурсоемких систем сделан режим запуска программы без визуализации, также предполагается сделать запись каждого шага в файл, чтобы можно было подробнее рассматривать шаги решения уже рассчитанной системы. | ||
+ | |||
+ | == Результаты == | ||
+ | |||
+ | '''I. Время прохождения частиц в зависимости от начального положения.''' | ||
+ | |||
+ | Проведен ряд экспериментов, в ходе которых установлено, что отдельные частицы, находящиеся в точках A и D (см. рисунок), достигают прохода примерно на 25-30% быстрее, чем частицы, находящиеся в точках B и C. | ||
+ | |||
+ | [[Файл: MDC_experiment.png]] | ||
+ | |||
+ | Данные результаты близки к результатам исследований, проведенных [[Денисова Вита|В. А. Денисовой]] в работе [[Денисова Вита|«Моделирование социальных процессов»]], где был проведен и снят на видеокамеру ряд экспериментов у метро «Василеостровская» | ||
+ | |||
+ | ---- | ||
+ | |||
+ | '''II. Время прохождения частиц в зависимости от геометрии прохода.''' | ||
+ | |||
+ | Проведены эксперименты, измеряющие зависимость скорости преодоления частицами прохода в зависимости от геометрии прохода. Единицей измерения времени в данном эксперименте взят шаг интегрирования N. В качестве изменяемой величины геометрии прохода взят угол наклона α стенок у прохода. | ||
+ | |||
+ | <gallery widths=250px heights=153px perrow=3> | ||
+ | Файл: MDC_geom_45.png|Геометрия при α = 45° | ||
+ | Файл: MDC_geom_-25.png|Геометрия при α = -25° | ||
+ | </gallery> | ||
[[MDCrowd_K1|Конфигурация с бортиками]] | [[MDCrowd_K1|Конфигурация с бортиками]] |
Версия 01:48, 7 апреля 2013
Введение
В работе исследуются способы более оптимальной организации движения людей, особенно в условиях паники – ведь в таком случае появляется большой риск получения людьми увечий вследствие увеличения «давления» в толпе.
Актуальность данной проблемы подтверждается, например, событиями в 2010 году в Дуйсбурге на фестивале «Love Parade», в ходе которого образовалась давка, в результате которой погиб 21 человек, и было ранено около 500 человек.
Цель
Цель работы – смоделировать и исследовать движение толпы при различных условиях, найти лучшие способы организации движения в таких местах, как проход в метрополитен, фойе театра, проход в концертный зал, и в других местах, предполагающий переход большого количества людей через некий узкий проём.
Реализация
Для моделирования данной задачи используется программа, написанная на языке Java с использованием библиотеки OpenGL. Для описания взаимодействия частиц (людей) используется положительная часть потенциала Леннарда-Джонса – частицы отталкиваются друг от друга, но не притягиваются. Чтобы смоделировать стремление людей попасть в определенную область – на моделирующей области задано векторное поле сил, устремляющее частицу к «выходу»
Для более наглядного отображения результатов моделирования разработаны средства визуализации, позволяющие отобразить достаточное количество частиц и требуемую геометрию области.
Для оценки ситуации измеряются две величины – время прохождения частиц через отверстие, и давление, возникающее в группе частиц. Требуется достичь минимального времени, однако при этом давление не должно превышать некоторого критического значения – чтобы максимально снизить риск травмирования людей в толпе.
Для расчета давления в системе, используется формула из главы «Техника моделирования» книги А. М. Кривцова «Деформирование и разрушение твердых тел с микроструктурой».
где d – размерность задачи (в нашем случае d = 2),
Fα - воздействие на частицу от окружающих её частиц α,
Aα – расстояние от рассчитываемой частицы до окружающих её частиц,
V – собственное пространство частицы (площадь многоугольника, построенного на половинах расстояний до ближайших частиц)
Для визуализации давлений, действующих на частицу, используется цвет этой частицы – чем больше давление, тем больше смещение к красному концу спектра
Также есть режим демонстрации. В этом режиме вместо сферы используется модель человека, взятая с сайта 3dmodelfree.com. Шаги модели анимированы с использованием системы 3Ds Max, а повороты и скорость шага смоделированы с помощью специально разработанной программной системы визуализации.
Сбор результатов расчетов
После каждого расчета полученные в ходе расчета данные записываются в файл результатов.
Программа может последовательно изменять какие-либо параметры начальной системы – например, можно задать начальное количество частиц – 30, конечное – 60 и шаг – 10. Тогда в автоматическом режиме будут посчитаны системы для 30, 40, 50 и 60 частиц, и после каждого расчета в файл результатов будут добавлены результаты эксперимента (время, затраченное частицами на «выход из комнаты», давления, возникающие в системе.) и его начальные условия. Таким же образом можно изменять и другие параметры – ширину прохода, количество расчетов одной системы, и др.
Для ускорения расчета ресурсоемких систем сделан режим запуска программы без визуализации, также предполагается сделать запись каждого шага в файл, чтобы можно было подробнее рассматривать шаги решения уже рассчитанной системы.
Результаты
I. Время прохождения частиц в зависимости от начального положения.
Проведен ряд экспериментов, в ходе которых установлено, что отдельные частицы, находящиеся в точках A и D (см. рисунок), достигают прохода примерно на 25-30% быстрее, чем частицы, находящиеся в точках B и C.
Данные результаты близки к результатам исследований, проведенных В. А. Денисовой в работе «Моделирование социальных процессов», где был проведен и снят на видеокамеру ряд экспериментов у метро «Василеостровская»
II. Время прохождения частиц в зависимости от геометрии прохода.
Проведены эксперименты, измеряющие зависимость скорости преодоления частицами прохода в зависимости от геометрии прохода. Единицей измерения времени в данном эксперименте взят шаг интегрирования N. В качестве изменяемой величины геометрии прохода взят угол наклона α стенок у прохода.