Краморов Данил. Курсовой проект по теоретической механике — различия между версиями

Материал из Department of Theoretical and Applied Mechanics
Перейти к: навигация, поиск
(Параметры системы:)
(Итог)
 
(не показано 16 промежуточных версий 4 участников)
Строка 11: Строка 11:
 
<math> C_l = 0.5 </math> (коэффициент подъемной силы)<br>
 
<math> C_l = 0.5 </math> (коэффициент подъемной силы)<br>
 
<math> \upsilon = 5.6 </math> м/с (максимальная скорость потока, расчет приведен)<br>
 
<math> \upsilon = 5.6 </math> м/с (максимальная скорость потока, расчет приведен)<br>
<math> C_d = 0.5 </math>(коэффициент сопртивления)<br>
+
<math> C_d = 0.5 </math> (коэффициент сопротивления)<br>
  
 
== Решение ==
 
== Решение ==
Строка 50: Строка 50:
 
<math> x = x_1+r </math><br>
 
<math> x = x_1+r </math><br>
 
<math> x = x_2-r </math><br>
 
<math> x = x_2-r </math><br>
Общая формула будет иметь вид:<br>
+
Общая формула при малых х будет иметь вид:<br>
<math>m \ddot x = -2\frac{\rho A C_l g r} {d^3} x\left[\sqrt{\frac {md^3}{5\rho A}} -2(x^2+r^2)\right] - C_d A\frac{\rho {\dot x}^2}{2};</math><br>
+
<math>m \ddot x = 2\frac{\rho A C_l g r} {d^3} \left[\sqrt{\frac {md^3}{5\rho A}} -2r^2)\right]x - C_d A\frac{\rho {\dot x}^3}{2d}-\frac{\rho A C_l g r} {d^2}\left[\sqrt{\frac {md^3}{5\rho A}} -2r^2)\right];</math><br>
 +
 
 +
<math>m\ddot x = D{\dot x}^3 + Bx + L</math>;
 +
 
 +
<math>B = 2\frac{\rho A C_l g r} {d^3} \left[\sqrt{\frac {md^3}{5\rho A}} -2r^2)\right]</math>;
 +
 
 +
<math>D = - C_d A\frac{\rho}{2d}</math>;
 +
 
 +
<math>L = \frac{\rho A C_l g r} {d^2}\left[\sqrt{\frac {md^3}{5\rho A}} -2r^2)\right]</math>;
 +
 
 
Уравнение колебаний для шарика в вертикальном воздушном потоке найдено.
 
Уравнение колебаний для шарика в вертикальном воздушном потоке найдено.
  

Текущая версия на 15:06, 26 июня 2012

Тема проекта[править]

Колебания шарика в вертикальном воздушном потоке

Постановка задачи[править]

Тело - в данном эксперименте шарик для настольного тенниса - помещается на край вертикального воздушного потока (создается феном). Подчиняясь закону Бернулли, шарик будет пытаться стабилизироваться в центре потока, совершая колебания. Требуется найти уравнение колебаний шарика. Рассматриваются только горизонтальные колебания внутри потока.

Параметры системы:[править]

[math] d = 4*10^{-2}[/math] м (диаметр потока)
[math] \rho = 0.125 [/math] кг/м^3 (массовая плотность воздуха)
[math] A = 12.56*10^{-4} [/math] м^2 (площадь поперечного сечения шара)
[math] C_l = 0.5 [/math] (коэффициент подъемной силы)
[math] \upsilon = 5.6 [/math] м/с (максимальная скорость потока, расчет приведен)
[math] C_d = 0.5 [/math] (коэффициент сопротивления)

Решение[править]

График скорости(v(t))

Рассмотрим горизонтальную составляющую второго закона Ньютона для данного тела. В этом направление на шарик действуют подъемная сила (объясняемая эффектом Магнуса) и сила аэродинамического сопротивления.

[math]m \ddot x = \frac{1} {2} \rho \upsilon^2 AC_l- C_d A\frac{\rho {\dot x}^2}{2};[/math]

График движения(x(t))

Шарик не является точечным делом, поэтому на границы шарика действуют два разных по значению подъемные силы. Они будут противоположны по знаку. Следовательно уравнение движения будет иметь вид:

[math]m \ddot x = \frac{1} {2} \rho ({\upsilon_1}^2-{\upsilon_2}^2) AC_l - C_d A\frac{\rho {\dot x}^2}{2};[/math]


Задача сводится к нахождению функции, описывающей скорость шара в вертикальном воздушном потоке. Найти требуемую функцию можно разными способами. Максимальная скорость будет достигаться в центре потока. По краям же скорость будет меньшей. Следовательно в грубом приближение функция скорости будет представлять из себя параболу.

Получаем зависимость от местоположения в потоке.

[math] \upsilon(x)= - \sqrt {\frac{g} {d^3}} x^2 + \upsilon_{max}[/math]

Теперь следует найти максимальную скорость потока.

Расчет максимальной скорости[править]

График ускорения(w(t))

[math] q = \frac {\rho \upsilon^2*10} {2} [/math]
[math] q = \frac {F} {S} = \frac {mg} {A} [/math]
[math] \frac {\rho \upsilon^2*10} {2} = \frac {mg} {A} [/math]
[math] \upsilon = \sqrt {\frac {mg} {5 \rho A}} [/math]

Общая формула для скорости будет иметь вид:

[math] \upsilon(x)= -\sqrt {\frac{g} {d^3}} x^2 + \sqrt {\frac {mg} {5 \rho A}}[/math]

Итог[править]

[math] x = x_1+r [/math]
[math] x = x_2-r [/math]
Общая формула при малых х будет иметь вид:
[math]m \ddot x = 2\frac{\rho A C_l g r} {d^3} \left[\sqrt{\frac {md^3}{5\rho A}} -2r^2)\right]x - C_d A\frac{\rho {\dot x}^3}{2d}-\frac{\rho A C_l g r} {d^2}\left[\sqrt{\frac {md^3}{5\rho A}} -2r^2)\right];[/math]

[math]m\ddot x = D{\dot x}^3 + Bx + L[/math];

[math]B = 2\frac{\rho A C_l g r} {d^3} \left[\sqrt{\frac {md^3}{5\rho A}} -2r^2)\right][/math];

[math]D = - C_d A\frac{\rho}{2d}[/math];

[math]L = \frac{\rho A C_l g r} {d^2}\left[\sqrt{\frac {md^3}{5\rho A}} -2r^2)\right][/math];

Уравнение колебаний для шарика в вертикальном воздушном потоке найдено.

Обсуждение результатов и выводы[править]

Аналитический расчет подтвердил экспериментальную оценку. Окончательное уравнение показало, что тело в вертикальном воздушном потоке совершает затухающие колебания. Также можно отметить, что колебания оказались очень малы. Шарик практически моментально стабилизируется в потоке. Что касается вертикальных колебаний, то они зависят от перепадов напряжения в сети и носят довольно случайный характер. Посредством пакета matlab были построены графики скорости, ускорения и движения тела в потоке.

Ссылки по теме[править]

Закон Бернулли
Эффект Магнуса

См. также[править]