Степанов Алексей. Курсовой проект по теоретической механике — различия между версиями
Aleste (обсуждение | вклад) (→Обсуждение результатов и выводы) |
Aleste (обсуждение | вклад) (→Решение) |
||
Строка 39: | Строка 39: | ||
После сокращения:<br> | После сокращения:<br> | ||
<math>m \ddot x = -\rho g S x</math><br> | <math>m \ddot x = -\rho g S x</math><br> | ||
− | Остается проверить размерность величины <math>\frac{\rho g S} {m} = \frac {kg m^3} {s^2 m^3 kg} = \frac {1} {s^2}</math> <br> | + | Остается проверить размерность величины <math>\omega^2 = \frac{\rho g S} {m} = \frac {kg m^3} {s^2 m^3 kg} = \frac {1} {s^2}</math> <br> |
Уравнение колебаний найдено.<br> | Уравнение колебаний найдено.<br> | ||
2) '''Бортовая качка''' <br> | 2) '''Бортовая качка''' <br> |
Версия 23:11, 25 июня 2012
Содержание
Тема проекта
Описание колебаний плавающих тел.
Постановка задачи
Найти уравнение колебаний для следующих тел:
1) Шар
2) Параллелепипед
- Вертикальные колебания
- "Бортовая качка"
Решение
1) Шар
ПУР:
- начальная глубина погружения - плотность жидкости - радиус шара
Второй закон Ньютона примет вид:
После возведения в квадрат получаем:
Проводим линеаризацию уравнения
Раскроем скобки:
В результате имеем:
;
Так как формула имеет вид
Остается проверить размерность величины
Уравнение колебаний найдено.
2) Вертикальные колебания параллелепипеда
ПУР:
- начальная глубина погружения - плотность жидкости - площадь сечения
Второй закон Ньютона примет вид:
После сокращения:
Остается проверить размерность величины
Уравнение колебаний найдено.
2) Бортовая качка
Очевидно, что модуль силы Архимеда остается постоянным(так как постоянным остается объем погруженной части тела в силу симметрии тела).
Меняется только точка приложения, что и создает момент силы Архимеда, вызывающий колебания. Тогда уравнения примут вид:
- момент инерции тела относительно центра масс - сила Архимеда - плечо силы Архимеда
Так как тело плавает
Итоговое уравнение:
Обсуждение результатов и выводы
1) Можно заметить, что угловая частота колебаний шара имеет максимум в точке
2) Интересно то, что , где l - полная высота параллелепипеда, а k - коэффициент, равный отношению жидкости тела к плотности тела
3)Пусть тело площадью сечения и массой плавает в воде( ). Период вертикальных колебаний будет равен
Предположим, что это тело - куб . Момент инерции куба относительно оси, проходящей через его центр масс, перпендикулярно поверхности , где - длина стороны куба. Тогда
4) Частоты колебаний параллелепипида оказываются схожими с частотой колебаний математического маятника при вертикальной качке и с частотой колебаний физического маятника при "бортовой качке".
Например, сравним и , - расстояние от точки подвеса до центра тяжести физ. маятника, а и высота и длина параллелепипеда соответственно.