Дзенушко Дайнис. Курсовой проект по теоретической механике — различия между версиями
Dainis (обсуждение | вклад) (→Решение) |
Dainis (обсуждение | вклад) (→Решение) |
||
Строка 34: | Строка 34: | ||
<math>T_1 = \frac{\underline{\omega}_1 \cdot \underline{\underline{\Theta}}_1 \cdot \underline{\omega}_1}{2} = \frac{\Theta_1 \omega_1^2}{2} = \frac{\Theta_1 \dot{\varphi}^2}{2}</math> - Кинетическая энергия первого стержня<br> | <math>T_1 = \frac{\underline{\omega}_1 \cdot \underline{\underline{\Theta}}_1 \cdot \underline{\omega}_1}{2} = \frac{\Theta_1 \omega_1^2}{2} = \frac{\Theta_1 \dot{\varphi}^2}{2}</math> - Кинетическая энергия первого стержня<br> | ||
<math>\Pi_1 = m_1 g \left( \frac{a}{2} - \frac{a}{2} \cos \varphi \right)</math> - Потенциальная энергия первого стержня<br> | <math>\Pi_1 = m_1 g \left( \frac{a}{2} - \frac{a}{2} \cos \varphi \right)</math> - Потенциальная энергия первого стержня<br> | ||
− | <math>T_2 = \frac{\underline{\omega}_2 \cdot \underline{\underline{\Theta}}_2 \cdot \underline{\omega}_2}{2}</math> - Кинетическая энергия второго стержня<br> | + | <math>T_2 = \frac{\underline{\omega}_2 \cdot \underline{\underline{\Theta}}_2 \cdot \underline{\omega}_2}{2} + \frac{m_2 \vartheta_c^2}{2}</math> - Кинетическая энергия второго стержня<br> |
<math>\underline{\omega}_2 = ?</math><br><br> | <math>\underline{\omega}_2 = ?</math><br><br> | ||
Строка 52: | Строка 52: | ||
Таким образом получаем что:<br> | Таким образом получаем что:<br> | ||
<math>\underline{\omega}_2 = - \frac{1}{2} \left( \underline{\underline{\dot{P}}}_2 \cdot \underline{\underline{P}}^T_2 \right)_\times + \underline{\underline{P}}_2 \cdot \dot{\varphi} \underline{k}</math><br><br> | <math>\underline{\omega}_2 = - \frac{1}{2} \left( \underline{\underline{\dot{P}}}_2 \cdot \underline{\underline{P}}^T_2 \right)_\times + \underline{\underline{P}}_2 \cdot \dot{\varphi} \underline{k}</math><br><br> | ||
+ | '''Найдем скорость центра масс второго стержня'''<br> | ||
+ | |||
+ | <math>\underline{\vartheta}_c = \frac{1}{2}\underline{\omega}_2 \times \underline{b} + \dot{\varphi}\underline{k}\times \underline{a} ; \qquad \underline{a} = \underline{\underline{P}}_1 \cdot a\underline{j} ; \qquad \underline{b} = \underline{\underline{P}}_2\cdot\underline{\underline{P}}_1 \cdot b\underline{j}</math> | ||
+ | <br><br> | ||
'''Найдем кинетическую энергию второго стержня'''<br> | '''Найдем кинетическую энергию второго стержня'''<br> | ||
Запишем тензор инерции второго стержня:<br> | Запишем тензор инерции второго стержня:<br> | ||
<math>\underline{\underline{\Theta}}_2 = \frac{ml^2}{12}\left(\underline{\underline{E}} - \underline{\tilde{e}\tilde{e}} \right) ;\qquad \underline{\tilde{e}} = \underline{\underline{P}}_2 \cdot \underline{\underline{P}}_1 \cdot \underline{j}</math><br><br> | <math>\underline{\underline{\Theta}}_2 = \frac{ml^2}{12}\left(\underline{\underline{E}} - \underline{\tilde{e}\tilde{e}} \right) ;\qquad \underline{\tilde{e}} = \underline{\underline{P}}_2 \cdot \underline{\underline{P}}_1 \cdot \underline{j}</math><br><br> | ||
+ | Теперь мы нашли все необходимое для подставления в формулу для кинетической энергии второго стержня:<br> | ||
+ | <math>T_2 = \frac{\underline{\omega}_2 \cdot \underline{\underline{\Theta}}_2 \cdot \underline{\omega}_2}{2} + \frac{m_2 \vartheta_c^2}{2}</math> | ||
+ | <br><br> | ||
+ | |||
+ | '''Найдем потенциальную энергию второго стержня'''<br> | ||
+ | <math>\Pi_2 = a+b - \underline{r}_c \cdot \underline{j}; \qquad \underline{r}_c = \underline{a} + \frac{1}{2}\underline{b}</math> - радиус-вектор центра масс второго стержня<br><br> | ||
+ | '''Получение уравнения движения'''<br> | ||
+ | Продифференцируем полученные выражения для потенциальной и кинетической энергий, как это требует уравнение Лагранжа и подставим полученное в него. В результате получим систему из двух дифференциальных уравнений которые описывают движение системы.<br> | ||
+ | Заметим что данный метод решения дает нам уравнение движения для больших углов, в случае необходимости его можно линеаризовать предположив что углы <math>\varphi,\psi</math> малы и отбросив слагаемые второго порядка.<br> | ||
== Обсуждение результатов и выводы == | == Обсуждение результатов и выводы == |
Версия 21:53, 25 июня 2012
Содержание
Тема проекта
Описание колебаний двойного маятника
Постановка задачи
Стержень прикреплен к потолку посредством циллиндрического шарнира. Cнизу к этому стержню прикреплен второй также посредством циллиндрического шарнира таким образом что когда маятник вытянут вдоль вертикали, обе оси вращения шарниров расположены в горизонтальной плоскости а угол между ними составляет
Параметры системы:
- Тензоры инерции первого и второго стержней равны и соответственно.
- Длины стержней равны a и b, их массы и соответственно первому и второму стержням.
- Угол между осями вращения шарниров равен
- - угол между первым стержнем и вертикалью
- - угол между осью первого стержня и вторым стержнем т.е. угол во втором шарнире относительно вытянутого положения
Задача:
- Найти уравнение движения системы
Решение
Определимся с подходом к решению: Задачу будем решать при помощи уравнения Лагранжа имеющего следующий вид:
Выберем обобщенные координаты: в качестве обобщенных координат возьмем углы
- В нашем случае отсутствуют обощенные силы, соответствующие непотенциальным взаимодействиям.
Найдем потенциальную и кинетическую энергии системы:
- Потенциальная энергия системы
- Кинетическая энергия системы
- Кинетическая энергия первого стержня
- Потенциальная энергия первого стержня
- Кинетическая энергия второго стержня
Найдем вектор угловой скорости второго стержня:
Для нахождения найдем тензоры поворота первого и второго стержней
Где:
- ось вращения второго стержня в данном положении
- ось вращения второго стержня в начальном положении
Теперь по формуле сложения угловых скоростей
Где:
Таким образом получаем что:
Найдем скорость центра масс второго стержня
Найдем кинетическую энергию второго стержня
Запишем тензор инерции второго стержня:
Теперь мы нашли все необходимое для подставления в формулу для кинетической энергии второго стержня:
Найдем потенциальную энергию второго стержня
- радиус-вектор центра масс второго стержня
Получение уравнения движения
Продифференцируем полученные выражения для потенциальной и кинетической энергий, как это требует уравнение Лагранжа и подставим полученное в него. В результате получим систему из двух дифференциальных уравнений которые описывают движение системы.
Заметим что данный метод решения дает нам уравнение движения для больших углов, в случае необходимости его можно линеаризовать предположив что углы малы и отбросив слагаемые второго порядка.