Степанов Алексей. Курсовой проект по теоретической механике — различия между версиями
Aleste (обсуждение | вклад) (→Обсуждение результатов и выводы) |
Aleste (обсуждение | вклад) (→Решение) |
||
Строка 24: | Строка 24: | ||
Проводим линеаризацию уравнения<br> | Проводим линеаризацию уравнения<br> | ||
<math>m \ddot x = -\frac{\pi \rho g} {3} d_0^3 + \pi \rho g d_0^2R - \frac{\pi \rho g} {3}(d_0^2 + 2 d_0x + o(x^2))(3R-d_0-x)</math><br> | <math>m \ddot x = -\frac{\pi \rho g} {3} d_0^3 + \pi \rho g d_0^2R - \frac{\pi \rho g} {3}(d_0^2 + 2 d_0x + o(x^2))(3R-d_0-x)</math><br> | ||
+ | Раскроем скобки:<br> | ||
<math>m \ddot x = -\frac{\pi \rho g} {3} d_0^3 + \pi \rho g d_0^2R - \frac{\pi \rho g} {3}(3d_o^2R - d_0^3 + 6d_0Rx - 3d_0^2x)</math><br> | <math>m \ddot x = -\frac{\pi \rho g} {3} d_0^3 + \pi \rho g d_0^2R - \frac{\pi \rho g} {3}(3d_o^2R - d_0^3 + 6d_0Rx - 3d_0^2x)</math><br> | ||
В результате имеем:<br> | В результате имеем:<br> | ||
− | |||
<math>m \ddot x = \pi \rho g d_0(-2 R + d_0)x</math>; <br> | <math>m \ddot x = \pi \rho g d_0(-2 R + d_0)x</math>; <br> | ||
Так как <math>(-2 R + d_0) < 0</math> формула имеет вид <math>m \ddot x + \pi \rho g d_0(2 R - d_0)x = 0</math> <br> | Так как <math>(-2 R + d_0) < 0</math> формула имеет вид <math>m \ddot x + \pi \rho g d_0(2 R - d_0)x = 0</math> <br> | ||
− | Остается проверить размерность величины <math>\frac{\pi \rho g d_0(2 R - d_0)} {m} = \frac {1} {s^2}</math> <br> | + | Остается проверить размерность величины <math>\omega^2 = \frac{\pi \rho g d_0(2 R - d_0)} {m} = \frac {1} {s^2}</math> <br> |
Уравнение колебаний найдено.<br> | Уравнение колебаний найдено.<br> | ||
2) '''Вертикальные колебания параллелепипеда''' <br> | 2) '''Вертикальные колебания параллелепипеда''' <br> | ||
Строка 38: | Строка 38: | ||
Второй закон Ньютона примет вид: <br> | Второй закон Ньютона примет вид: <br> | ||
<math>m \ddot x = mg -\rho g S (d_o + x)</math><br> | <math>m \ddot x = mg -\rho g S (d_o + x)</math><br> | ||
+ | После сокращения:<br> | ||
<math>m \ddot x = -\rho g S x</math><br> | <math>m \ddot x = -\rho g S x</math><br> | ||
Остается проверить размерность величины <math>\frac{\rho g S} {m} = \frac {kg m^3} {s^2 m^3 kg} = \frac {1} {s^2}</math> <br> | Остается проверить размерность величины <math>\frac{\rho g S} {m} = \frac {kg m^3} {s^2 m^3 kg} = \frac {1} {s^2}</math> <br> | ||
Строка 50: | Строка 51: | ||
Так как тело плавает <math>F_a = mg</math><br> | Так как тело плавает <math>F_a = mg</math><br> | ||
<math>\Theta_c \ddot \varphi = -\frac {mg h^2} {6 d} \varphi</math><br> | <math>\Theta_c \ddot \varphi = -\frac {mg h^2} {6 d} \varphi</math><br> | ||
+ | Итоговое уравнение:<br> | ||
<math>\ddot \varphi + \frac {mg h^2} {6 d\Theta_c}\varphi = 0 </math><br> | <math>\ddot \varphi + \frac {mg h^2} {6 d\Theta_c}\varphi = 0 </math><br> | ||
Версия 17:51, 1 июня 2012
Содержание
Тема проекта
Описание колебаний плавающих тел.
Постановка задачи
Найти уравнение колебаний для следующих тел:
1) Шар
2) Параллелепипед
- Вертикальные колебания
- "Бортовая качка"
Решение
1) Шар
ПУР:
- начальная глубина погружения - плотность жидкости - радиус шара
Второй закон Ньютона примет вид:
После возведения в квадрат получаем:
Проводим линеаризацию уравнения
Раскроем скобки:
В результате имеем:
;
Так как формула имеет вид
Остается проверить размерность величины
Уравнение колебаний найдено.
2) Вертикальные колебания параллелепипеда
ПУР:
- начальная глубина погружения - плотность жидкости - площадь сечения
Второй закон Ньютона примет вид:
После сокращения:
Остается проверить размерность величины
Уравнение колебаний найдено.
2) Бортовая качка
Очевидно, что модуль силы Архимеда остается постоянным(так как постоянным остается объем погруженной части тела в силу симметрии тела).
Меняется только точка приложения, что и создает момент силы Архимеда, вызывающий колебания. Тогда уравнения примут вид:
- момент инерции тела относительно центра масс - сила Архимеда - плечо силы Архимеда
Так как тело плавает
Итоговое уравнение:
Обсуждение результатов и выводы
1) Можно заметить, что угловая частота колебаний шара имеет максимум в точке
3) Частоты колебаний параллелепипида оказываются схожими с частотой колебаний математического маятника при вертикальной качке и с частотой колебаний физического маятника при "бортовой качке".
Например, сравним и , - расстояние от точки подвеса до центра тяжести физ. маятника, а и высота и длина параллелепипеда соответственно.