Степанов Алексей. Курсовой проект по теоретической механике — различия между версиями
Материал из Department of Theoretical and Applied Mechanics
(→Решение) |
Aleste (обсуждение | вклад) (→Решение) |
||
Строка 22: | Строка 22: | ||
<math>m \ddot x = \pi \rho g d_0(-2 R + d_0)x</math>; <br> | <math>m \ddot x = \pi \rho g d_0(-2 R + d_0)x</math>; <br> | ||
Так как <math>(-2 R + d_0) < 0</math> формула имеет вид <math>m \ddot x + \pi \rho g d_0(2 R - d_0)x = 0</math> <br> | Так как <math>(-2 R + d_0) < 0</math> формула имеет вид <math>m \ddot x + \pi \rho g d_0(2 R - d_0)x = 0</math> <br> | ||
− | Остается проверить размерность величины <math>\frac{\pi \rho g d_0(2 R - d_0)} {m}</math> <br> | + | Остается проверить размерность величины <math>\frac{\pi \rho g d_0(2 R - d_0)} {m} = \frac {1} {s^2}</math> <br> |
Уравнение колебаний найдено.<br> | Уравнение колебаний найдено.<br> | ||
2) '''Вертикальные колебания параллелепипеда''' <br> | 2) '''Вертикальные колебания параллелепипеда''' <br> |
Версия 21:48, 29 мая 2012
Содержание
Тема проекта
Описание колебаний плавающих тел.
Постановка задачи
Найти уравнение колебаний для следующих тел:
1) Шар
2) Параллелепипед
- Вертикальные колебания
- "Бортовая качка"
Решение
1) Шар
ПУР:
Второй закон Ньютона примет вид:
;
Так как формула имеет вид
Остается проверить размерность величины
Уравнение колебаний найдено.
2) Вертикальные колебания параллелепипеда
ПУР:
Второй закон Ньютона примет вид:
Остается проверить размерность величины
Уравнение колебаний найдено.
Обсуждение результатов и выводы
1) Интересно то, что