Редактирование: Mie–Gruneisen equation of state

Перейти к: навигация, поиск

Внимание! Вы не авторизовались на сайте. Ваш IP-адрес будет публично видимым, если вы будете вносить любые правки. Если вы войдёте или создадите учётную запись, правки вместо этого будут связаны с вашим именем пользователя, а также у вас появятся другие преимущества.

Правка может быть отменена. Пожалуйста, просмотрите сравнение версий, чтобы убедиться, что это именно те изменения, которые вас интересуют, и нажмите «Записать страницу», чтобы изменения вступили в силу.
Текущая версия Ваш текст
Строка 2: Строка 2:
  
 
== Source ==
 
== Source ==
 
+
This article is based on the paper '''A.M. Krivtsov, V.A. Kuzkin, [[Медиа: Krivtsov_2011_MechSol.pdf | Derivation of Equations of State for Ideal Crystals of Simple Structure]] // Mech. Solids. 46 (3), 387-399 (2011)'''
This article is based on the paper  
 
 
 
* Krivtsov A.M., Kuzkin V.A. '''Derivation of Equations of State for Ideal Crystals of Simple Structure''' // ''Mech. Solids.'' 46 (3), 387-399 (2011) (Download pdf: [[Медиа:Krivtsov_2011_MechSol.pdf‎|529 Kb]])
 
  
 
== Mie-Gruneisen equation of state ==
 
== Mie-Gruneisen equation of state ==
 
 
In high pressure physics it is usual to represent the total pressure  <math>p</math> in condensed matter as a sum of "cold" and  "thermal"  components:
 
In high pressure physics it is usual to represent the total pressure  <math>p</math> in condensed matter as a sum of "cold" and  "thermal"  components:
  
Строка 33: Строка 29:
  
 
where <math>k</math> is the number of coordination sphere, <math>n</math> is the number of coordination spheres, <math>N_k</math> is the number of atoms bolonging to the <math>k</math>-th coordination sphere, <math> A_k = \rho_k R \theta</math> is the radius of coordination sphere , <math> \rho_k=A_k/A_1 </math>, <math>R</math> is the radius of the first coordination sphere in undeformed configuration, <math>\varPhi^{(n)}_k = \varPhi^{(n)}(A_k^2)</math>.
 
where <math>k</math> is the number of coordination sphere, <math>n</math> is the number of coordination spheres, <math>N_k</math> is the number of atoms bolonging to the <math>k</math>-th coordination sphere, <math> A_k = \rho_k R \theta</math> is the radius of coordination sphere , <math> \rho_k=A_k/A_1 </math>, <math>R</math> is the radius of the first coordination sphere in undeformed configuration, <math>\varPhi^{(n)}_k = \varPhi^{(n)}(A_k^2)</math>.
 +
  
 
== Cold curve for Lennard-Jones, Mie, and Morse potentials ==
 
== Cold curve for Lennard-Jones, Mie, and Morse potentials ==
Строка 42: Строка 39:
 
  \varPi(r) =D\left[\left(\frac{a}{r}\right)^{12}-2\left(\frac{a}{r}\right)^{6}\right], ~~~~ p_0 = \frac{6MD}{dV_0\theta^{d}}(\theta^{-12}-\theta^{-6})
 
  \varPi(r) =D\left[\left(\frac{a}{r}\right)^{12}-2\left(\frac{a}{r}\right)^{6}\right], ~~~~ p_0 = \frac{6MD}{dV_0\theta^{d}}(\theta^{-12}-\theta^{-6})
 
</math>
 
</math>
 +
  
 
* '''Cold curve for Mie potential:'''
 
* '''Cold curve for Mie potential:'''
Строка 117: Строка 115:
 
   \varGamma = \frac{1}{d}\frac{4(8-d)\theta^{6}-7(14-d)}{(8-d)\theta^{6}-(14-d)}.
 
   \varGamma = \frac{1}{d}\frac{4(8-d)\theta^{6}-7(14-d)}{(8-d)\theta^{6}-(14-d)}.
 
</math>
 
</math>
 +
  
 
* '''Gruneisen function for Mie potential:'''  
 
* '''Gruneisen function for Mie potential:'''  
Строка 122: Строка 121:
 
     \varGamma = \frac{1}{2d}\frac{(n+2)(n-d+2)\theta^{m-n}-(m+2)(m-d+2)}{(n-d+2)\theta^{m-n}-(m-d+2)}.
 
     \varGamma = \frac{1}{2d}\frac{(n+2)(n-d+2)\theta^{m-n}-(m+2)(m-d+2)}{(n-d+2)\theta^{m-n}-(m-d+2)}.
 
</math>
 
</math>
 +
  
 
* '''Gruneisen function for Morse potential:'''
 
* '''Gruneisen function for Morse potential:'''
Строка 130: Строка 130:
 
</math>
 
</math>
 
<math>d_1 = d-1,~~</math> <math>\theta=(V/V_0)^{1/d}</math>
 
<math>d_1 = d-1,~~</math> <math>\theta=(V/V_0)^{1/d}</math>
 +
 +
 +
  
 
== Papers ==
 
== Papers ==
* Krivtsov A.M., Kuzkin V.A. '''Derivation of Equations of State for Ideal Crystals of Simple Structure''' // ''Mech. Solids.'' 46 (3), 387-399 (2011) (Download pdf: [[Медиа:Krivtsov_2011_MechSol.pdf‎|529 Kb]])
+
* A.M. Krivtsov, V.A. Kuzkin, [[Медиа: Krivtsov_2011_MechSol.pdf | Derivation of Equations of State for Ideal Crystals of Simple Structure]] // Mech. Solids. 46 (3), 387-399 (2011).
 
* MacDonald D. K. C., Roy, S.K. (1955), "Vibrational Anharmonicity and Lattice Thermal Properties. II", Phys. Rev. 97: 673–676, doi:10.1103/PhysRev.97.673
 
* MacDonald D. K. C., Roy, S.K. (1955), "Vibrational Anharmonicity and Lattice Thermal Properties. II", Phys. Rev. 97: 673–676, doi:10.1103/PhysRev.97.673
  
Вам запрещено изменять защиту статьи. Edit Создать редактором

Обратите внимание, что все добавления и изменения текста статьи рассматриваются как выпущенные на условиях лицензии Public Domain (см. Department of Theoretical and Applied Mechanics:Авторские права). Если вы не хотите, чтобы ваши тексты свободно распространялись и редактировались любым желающим, не помещайте их сюда.
Вы также подтверждаете, что являетесь автором вносимых дополнений или скопировали их из источника, допускающего свободное распространение и изменение своего содержимого.
НЕ РАЗМЕЩАЙТЕ БЕЗ РАЗРЕШЕНИЯ МАТЕРИАЛЫ, ОХРАНЯЕМЫЕ АВТОРСКИМ ПРАВОМ!

To protect the wiki against automated edit spam, we kindly ask you to solve the following CAPTCHA:

Отменить | Справка по редактированию  (в новом окне)