Редактирование: Моделирование падения цепи

Перейти к: навигация, поиск

Внимание! Вы не авторизовались на сайте. Ваш IP-адрес будет публично видимым, если вы будете вносить любые правки. Если вы войдёте или создадите учётную запись, правки вместо этого будут связаны с вашим именем пользователя, а также у вас появятся другие преимущества.

Правка может быть отменена. Пожалуйста, просмотрите сравнение версий, чтобы убедиться, что это именно те изменения, которые вас интересуют, и нажмите «Записать страницу», чтобы изменения вступили в силу.
Текущая версия Ваш текст
Строка 6: Строка 6:
  
 
'''Семестр:''' осень 2022
 
'''Семестр:''' осень 2022
 
===Постановка задачи===
 
В рамках проекта необходимо смоделировать движение одномерной цепочки: начальное положение (провисание) цепочки и дальнейшее ее падение при отпускании одного из концов под действием силы тяжести, а также исследовать зависимость ускорения крайней свободной частицы от времени.
 
 
===Математическая модель ===
 
Изначально запишем закон движения:
 
<math>
 
m\underline{\ddot{r}}_i(t)=\underline{F}_{i-1}+\underline{F}_{i+1} + \underline{F}_{g}\\
 
\underline{r}_i(0)=\underline{r}_i^0,~\underline{v}_i(0)=0~~~i=1,\ldots,n
 
</math>
 
 
где
 
<math>
 
\underline{F}_{i-1}, \underline{F}_{i+1}\\
 
</math> - силы упругости действующие на <math>i</math>-ую частицу со стороны <math>i-1</math> и <math>i+1</math> соответственно, а <math> \underline{F}_{g}=-mg\underline{k} \\ </math> - сила тяжести.
 
 
Далее распишем силу упругости как произведение модуля на соответствующий орт:
 
<math>
 
\underline{F}_{i+1}= c(|\underline{r}_{i+1}-\underline{r}_{i}| - l_0)\frac{(\underline{r}_{i+1}-\underline{r}_{i})}{|\underline{r}_{i+1}-\underline{r}_{i}|}
 
</math>, где <math>c</math> - коэффициент жесткости пружины.
 
Аналогично записывается сила <math>\underline{F}_{i-1}</math>.
 
 
Далее подставляя все силы в уравнение движения, получим:
 
 
<math>
 
m\underline{\ddot{r}}_i(t)= c(||\underline{r}_{i+1}-\underline{r}_i|| -l_0)\frac{(\underline{r}_{i+1}-\underline{r}_i)}{||\underline{r}_{i+1}-\underline{r}_i||} + c(||\underline{r}_{i-1}-\underline{r}_i|| - l_0)\frac{(\underline{r}_{i-1}-\underline{r}_i)}{||\underline{r}_{i-1}-\underline{r}_i||} - mg\underline{k}\\
 
</math>
 
 
Дальнейшее интегрирование уравнения производится с помощью явного симплектического метода Верле c нулевыми начальными условиями и условиями закрепления на концах.
 
 
<math> \begin{cases}
 
V_{i+1} = V_i+A_i\Delta{t}\\
 
X_{i+1} = X_i+V_{i+1}\Delta{t},
 
\end{cases} </math>
 
 
===Результаты ===
 
 
===Выводы===
 
 
В рамках решения задачи смоделировано движение цепочки под действием силы тяжести и проилюсстрирован тот факт, что ускорение крайней массы цепочки больше, чем ускорение свободно падающего тела. Данный эффект объясняется начальным преднатяжением цепочки.
 
Вам запрещено изменять защиту статьи. Edit Создать редактором

Обратите внимание, что все добавления и изменения текста статьи рассматриваются как выпущенные на условиях лицензии Public Domain (см. Department of Theoretical and Applied Mechanics:Авторские права). Если вы не хотите, чтобы ваши тексты свободно распространялись и редактировались любым желающим, не помещайте их сюда.
Вы также подтверждаете, что являетесь автором вносимых дополнений или скопировали их из источника, допускающего свободное распространение и изменение своего содержимого.
НЕ РАЗМЕЩАЙТЕ БЕЗ РАЗРЕШЕНИЯ МАТЕРИАЛЫ, ОХРАНЯЕМЫЕ АВТОРСКИМ ПРАВОМ!

To protect the wiki against automated edit spam, we kindly ask you to solve the following CAPTCHA:

Отменить | Справка по редактированию  (в новом окне)