Редактирование: Информатика: Движение тела в среде

Перейти к: навигация, поиск

Внимание! Вы не авторизовались на сайте. Ваш IP-адрес будет публично видимым, если вы будете вносить любые правки. Если вы войдёте или создадите учётную запись, правки вместо этого будут связаны с вашим именем пользователя, а также у вас появятся другие преимущества.

Правка может быть отменена. Пожалуйста, просмотрите сравнение версий, чтобы убедиться, что это именно те изменения, которые вас интересуют, и нажмите «Записать страницу», чтобы изменения вступили в силу.
Текущая версия Ваш текст
Строка 1: Строка 1:
<div>
+
<div class="mw-collapsible mw-collapsed" style="width:100%" >
'''[[Абрамов Игорь]]'''  
+
'''[[Лебедев Станислав]]'''  
 +
'''Описание программы''': программа записывает в четыре файла результаты вычисления:
 +
# Координаты, рассчитанные по формуле, при движении без сопротивления воздуха;
 +
# Координаты, полученные методом Верле при линейной зависимости силы сопротивлении воздуха от скорости;
 +
# Координаты, полученные из точного решения, при линейной зависимости силы сопротивлении воздуха от скорости;
 +
# Координаты, полученные методом Верле при квадратичной зависимости силы сопротивлении воздуха от скорости.
 +
<br />
 +
Скачать можно  [http://tm.spbstu.ru/Файл:Движение_тела.rar тут].
 +
<br /><br />
  
'''Алгоритм''': в специализированном классе хранятся данные о мяче, функции-члены, задающие различные типы движения тела, функции отрисовки движения мяча. Все расчёты ведутся в режиме реального времени с помощью дополнительных функций. Отрисовка движения мяча происходит с помощью графических средств библиотеки OpenGL.
+
<div class="mw-collapsible-content">
  
'''Инструкция''': при запуске программы пользователь видит полёт четырёх мячей в замкнутом пространстве с равными начальными условиями, но различными алгоритмами движения. При желании изменить тип движения мяча достаточно изменить лишь название функции движения конкретного объекта в функции Display.
+
'''Описание программы''': программа записывает в четыре файла результаты вычисления:
 +
# Координаты, рассчитанные по формуле, при движении без сопротивления воздуха;
 +
# Координаты, полученные методом Верле при линейной зависимости силы сопротивлении воздуха от скорости;
 +
# Координаты, полученные из точного решения, при линейной зависимости силы сопротивлении воздуха от скорости;
 +
# Координаты, полученные методом Верле при квадратичной зависимости силы сопротивлении воздуха от скорости.
 +
<br /><br />
 +
[[File:1.png]]
 +
<br /><br />
 +
'''Визуализированный результат работы программы'''
 +
[[File:graph.png]]
  
Ссылка для скачивания: [http://tm.spbstu.ru/File:Ball_Abramov.rar]
+
# o1 - координаты, рассчитанные по формуле, при движении без сопротивления воздуха;
 +
# o2 - координаты, полученные методом Верле при линейной зависимости силы сопротивлении воздуха от скорости;
 +
# o3 - координаты, полученные из точного решения, при линейной зависимости силы сопротивлении воздуха от скорости;
 +
# o4 - координаты, полученные методом Верле при квадратичной зависимости силы сопротивлении воздуха от скорости.
 +
<br />
 +
Для тела с массой 10,сопротивлением воздуха 1, угол бросания 30°, начальная скорость 30 м/с, ускорение свободного падения 9.8 м/c^2;
 +
<br />
 +
''Примечание: графики o1 и o2 намеренно посчитаны с малой точностью, чтобы графики не сливались.''
 +
<syntaxhighlight lang="cpp" line start="1" enclose="div">
 +
#include <iostream>
 +
#include <math.h>
 +
#include "Vector.h"
 +
#include <cstring>
 +
#include <cmath>
 +
#include <malloc.h>
 +
#include <fstream>
  
</div>
+
#include <iostream>
 +
#include <math.h>
 +
#include "Vector.h"
 +
#include <cstring>
 +
#include <cmath>
 +
#include <malloc.h>
 +
#include <fstream>
  
 +
using namespace std;
  
<div class="mw-collapsible mw-collapsed" style="width:100%" >
+
int n = 100;
'''[[Андреева Полина]]'''
+
ofstream outfile;
  
'''Краткое описание алгоритма''': в классе находятся координаты по формулам и записываются в файл.
+
class Ball                                          //класс бросаемого тела
 +
{
 +
    private:
 +
        double angle,m,k;                          //угол броска,масса,коэффицент сопротивления воздуха
 +
        Vector3D r,v,a;                            //радиус-вектор,вектор скорости,ускорения
 +
    public:
  
''' Инструкция ''':
+
        //задание начальных параметров через угол,начальное положение,скорость и ускорение,с которым движется тело. Без сопротивления воздуха
Пользователь должен ввести начальную скорость, угол и шаг, с которым будут рассчитываться координаты. В файл координаты записываются в таком порядке: 1, 2 столбики - Координаты, рассчитанные по формуле, при движении без сопротивления воздуха; 3, 4 - Координаты, полученные методом Верле при линейной зависимости силы сопротивлении воздуха от скорости; 5,6 - Координаты, полученные из точного решения, при линейной зависимости силы сопротивлении воздуха от скорости; 7,8 - Координаты, полученные из точного решения, при линейной зависимости силы сопротивлении воздуха от скорости.
+
        Ball(double _angle, Vector3D _r, Vector3D _v, Vector3D _a)
 +
        {
 +
            angle = _angle;
 +
            r    = _r;
 +
            v    = _v;
 +
            a    = _a;
 +
        }
  
Скачать можно  [http://tm.spbstu.ru/File:ТраекторияАнПол.rar тут].
+
        //задание начальных параметров через угол,начальное положение,скорость и ускорение,с которым движется тело. Без сопротивления воздуха
 +
        Ball(double _angle, double _m, double _k, Vector3D _r, Vector3D _v, Vector3D _a)
 +
        {
 +
            angle = _angle;
 +
            r    = _r;
 +
            v    = _v;
 +
            a    = _a;
 +
            m    = _m;
 +
            k    = _k;
 +
        }
  
 +
        //точная формула зависимости координаты от времени
 +
        Vector3D positionReal(double t)
 +
        {
 +
            double c1 = m/k,c2 = fabs(a.y)*c1, c3 = exp(-t/c1), c4 = c2*t;
 +
            return MakeVector(v.x*c1*(1 - c3), c1*(v.y + c2)*(1 - c3) - c4 , 0 );
 +
        }
  
<div class="mw-collapsible-content">
+
        //вывод положения на экран
 +
        void writePosToScreen()
 +
        {
 +
            cout << r.x << "   " << r.y << "  " << r.z << endl;
 +
        }
  
 +
        //вывод положения в файл
 +
        void writePosToFile(char s[])
 +
        {
 +
            outfile.open(s,ios :: app);
 +
            outfile << r.x << "          " << r.y << endl;
 +
            outfile.close();
 +
        }
  
'''Визуализированный результат работы программы'''
+
        //вывод произвольного вектора на экран
 +
        void WVTS(Vector3D v)
 +
        {
 +
            cout.width(15);
 +
            cout << v.x;
 +
            cout.width(15);
 +
            cout << v.y;
 +
            cout.width(15);
 +
            cout << v.z << endl;
 +
        }
  
[[:File:graphAP.png]]
+
        //вывод произвольного вектора в файл
 +
        void WVTF(Vector3D v,char s[])
 +
        {
 +
            outfile.open(s,ios :: app);
 +
            outfile << v.x << "          " << v.y << endl;
 +
            outfile.close();
 +
        }
  
Для тела с массой 1 кг,сопротивлением воздуха 0.001, угол бросания 60°, начальная скорость 50 м/с, ускорение свободного падения 9.8 м/c^2, шаг 0.00001;
+
        //"пересчет" координаты по Верле(Линейная зависмость)
 +
        void changeR(Vector3D r1, double dt)
 +
        {
 +
            r = MakeVector(2 * r.x -  r1.x - k/m*v.x*dt*dt,2*r.y - r1.y - (abs(a.y) + k/m*v.y)*dt*dt, 0 );
 +
        }
  
# "MyFile.txt" using 1 : 2 - координаты, рассчитанные по формуле, при движении без сопротивления воздуха;
+
        //"пересчет" координаты по Верле(Квадратичная зависимость)
# "MyFile.txt" using 3 : 4 Координаты, полученные методом Верле при линейной зависимости силы сопротивлении воздуха от скорости;
+
        void changeRSQ(Vector3D r1, double dt)
# "MyFile.txt" using 5 : 6 - Координаты, полученные из точного решения, при линейной зависимости силы сопротивлении воздуха от скорости;
+
        {
# "MyFile.txt" using 7 : 8 - Координаты, полученные из точного решения, при линейной зависимости силы сопротивлении воздуха от скорости.
+
            r = MakeVector(2 * r.x r1.x - k/m*Length(v)*v.x*dt*dt,2*r.y - r1.y - (abs(a.y) + k/m*Length(v)*v.y)*dt*dt, 0 );
 +
        }
 +
        //пересчет скорости по Верле
 +
        void changeV(Vector3D r1,double dt)
 +
        {
 +
            v =VS((VmV(r,r1)),1/(2*dt));
 +
        }
  
 +
        //рассчет предыдущегт к 0ому элементу
 +
        Vector3D MR1(double dt)
 +
        {
 +
            return MakeVector(r.x - v.x * dt,r.y - v.y * dt,0);
 +
        }
  
 +
        //возращает координату тела
 +
        Vector3D getR()
 +
        {
 +
            return r;
 +
        }
  
<syntaxhighlight lang="cpp" line start="1" enclose="div">
+
        //рассчет времени полета
#include <iostream>
+
        double TimeOfFly()
#include <fstream>
+
        {
#include "math.h"
+
            return (2*Length(v)*sin(angle)/Length(a));
#include <iomanip>
+
        }
using namespace std;
 
class func
 
{
 
  
private:
+
        //рассчет координаты по точной формуле. без сопротивления воздуха.
    double speed0, angle0, step ;
+
        Vector3D position(double t)
  double time;
+
        {
 +
            return MakeVector(r.x + v.x*t + a.x*t*t/2,r.y + v.y*t + a.y*t*t/2,r.z + v.z*t + a.z*t*t/2);
 +
        }
  
  public:
+
};
      double const g=9.8, n=0.001, m=1;///постоянная g, n-коэфициент сопротивления воздухаб m-масса
 
      double t, amount;
 
      int amountint;
 
    func ( double _speed0, double _angle0, double _step ):speed0(_speed0), angle0(_angle0), step(_step)
 
    {
 
        angle0=(3.14159*angle0) / 180 ; ///перевод угла в радианы
 
  
        time = ( 2*speed0*sin(angle0) ) / g;///подсчет полного времени полета
+
int main()
        amount = (time/step) + 1;///количество точек для траектории
+
{
        amountint =  static_cast<int> (amount) ;
+
    //задание начальных параметров
 +
    Vector3D g = {0,-9.8,0};
 +
    double a,dt = 0;
 +
    char s[20];
  
 +
//    cin >> dt;
  
     }
+
     dt = 0.1;
 +
    a = (M_PI * 30)/180;
 +
    Ball b1(a, MakeVector(0,0,0),MakeVector(30,a),g);
  
 +
    double tof = b1.TimeOfFly()+1;  //единичка прибавлена,чтобы график красивым был
  
 
+
    //Без сопротивления возлуха
      void SaveFile(char filename[])
+
    strcpy(s,"");
 +
    strcat(s, "o1.txt");
 +
    outfile.open(s, ios :: trunc);
 +
    outfile.close();
 +
    for (double i = 0; i <= tof; i += dt)
 
     {
 
     {
         double x0=0, y0=0;
+
         b1.WVTS(b1.position(i));
        double xv1=0, x1=0, y1=0, Vx1=speed0*cos(angle0),Vy1=speed0*sin(angle0), V1=speed0, yv1=0;
+
         b1.WVTF(b1.position(i), s);
        double xm1=x0-speed0*cos(angle0)*step, ym1=y0-speed0*sin(angle0)*step;
+
    }
        double xv2=0, x2=0, y2=0, Vx2=speed0*cos(angle0),Vy2=speed0*sin(angle0), V2=speed0, yv2=0;
 
        double xm2=x0-speed0*cos(angle0)*step, ym2=y0-speed0*sin(angle0)*step;
 
        double x3,y3;
 
        std::ofstream fout(filename);
 
         for (int i=0; (y0+(speed0*sin(angle0)*i*step - (g*i*i*step*step*0.5)))>=0; i++)
 
        {
 
            ///Верле линейная зависимость
 
            x2=2*xv2-xm2-(n/m)*step*step*Vx2;
 
            y2=2*yv2-ym2-(g+(n/m)*Vy2)*step*step;
 
            Vx2=(x2-xm2) / (2.0*step);
 
            Vy2=(y2-ym2) / (2.0*step);
 
            xm2=xv2;
 
            xv2=x2;
 
            ym2=yv2;
 
            yv2=y2;
 
  
            ///точное решение
 
            x3=x0+speed0*cos(angle0)*(m/n)*(1.0-exp(-(n/m)*i*step));
 
            y3=y0+(m/n)*(speed0*sin(angle0) + g*(m/n))*(1.0-exp(-(n/m)*i*step))-g*(m/n)*i*step;
 
  
            ///метод Верле, квадратичная зависимость
+
    //Верле(Линейная зависимость)
            x1=2*xv1-xm1-(n/m)*step*step* Vx1 * V1;
+
    dt = 0.1;
            y1=2*yv1-ym1-(g+(n/m)*V1*Vy1)*step*step;
+
    a = (M_PI * 30)/180;
            Vx1=(x1-xm1) / (2.0*step);
+
    Ball b2(a,10 , 1, MakeVector(0,0,0),MakeVector(30,a),g);
            Vy1=(y1-ym1) / (2.0*step);
 
            V1=sqrt(Vx1*Vx1+Vy1*Vy1);
 
            xm1=xv1;
 
            xv1=x1;///запоминание предыдущего шага
 
            ym1=yv1;
 
            yv1=y1;
 
  
 +
    strcpy(s,"");
 +
    strcat(s, "o2.txt");
 +
    outfile.open(s,ios :: trunc);
 +
    outfile.close();
 +
    Vector3D r1 = b2.MR1(dt),rp;
 +
    for (double i = 0; i <= 20; i += dt)
 +
    {
 +
        rp = b2.getR();
 +
        b2.writePosToFile(s);
 +
        b2.writePosToScreen();
 +
        b2.changeR(r1,dt);
 +
        b2.changeV(r1,dt);
 +
        r1.x = rp.x;
 +
        r1.y = rp.y;
 +
    }
  
 +
    //Точное решение (Линейная зависимость)
 +
    dt = 0.1;
 +
    a = (M_PI * 30)/180;
 +
    Ball b3(a,10 , 1, MakeVector(0,0,0),MakeVector(30,a),g);
  
fout<< setw(20) << (x0+(speed0*cos(angle0)*step*i)) << setw(20) << (y0+(speed0*sin(angle0)*i*step - (g*i*i*step*step*0.5)))<<setw(20) << x1 << setw(20) << y1 <<setw(20) << x2 << setw(20)<<y2<<setw(20) << x3 << setw(20) << y3<<" \n";
+
    strcpy(s,"");
 
+
    strcat(s, "o3.txt");
         }
+
    outfile.open(s, ios :: trunc);
        fout.close();
+
    outfile.close();
 +
    for (double i = 0; i <= 20; i += dt)
 +
    {
 +
        b3.WVTS(b3.positionReal(i));
 +
         b3.WVTF(b3.positionReal(i), s);
 
     }
 
     }
  
};
 
  
 +
    //Верле (Квадратичная зависимость)
 +
    dt = 0.1;
 +
    a = (M_PI * 30)/180;
 +
    Ball b4(a,10 , 1, MakeVector(0,0,0),MakeVector(30,a),g);
  
int main()
+
    strcpy(s,"");
{
+
    strcat(s, "o4.txt");
     double V0, angle, step;
+
     outfile.open(s, ios :: trunc);
     cout << " enter V0 = ";///введите начальную скорость
+
     outfile.close();
     cin >> V0;
+
     r1 = b4.MR1(dt);
     cout << " enter an angle , 0 < angle <= 90, angle = " ;///введите угол в диапозоне от 0 до 90 градусов
+
     for (double i = 0; i <= 20; i += dt)
     cin >> angle;
+
     {
    cout << "\n enter step ";///введите шаг, с которым будут рассчитываться координаты
+
        rp = b4.getR();
    cin >> step; cout << endl;
+
        b4.writePosToFile(s);
    func f1(V0,angle,step);///создание траектории
+
        b4.writePosToScreen();
    f1.SaveFile("Myfile.txt");///запись в файл
+
        b4.changeRSQ(r1,dt);
 
+
        b4.changeV(r1,dt);
 +
        r1.x = rp.x;
 +
        r1.y = rp.y;
 +
    }
  
 
     return 0;
 
     return 0;
 
}
 
}
 +
 
</syntaxhighlight>
 
</syntaxhighlight>
</div>
 
 
<div>
 
 
'''[[Бальцер Анастасия]]'''
 
 
'''Описание программы''' : программа записывает в четыре файла результаты вычисления:
 
 
Координаты, рассчитанные по формуле, при движении без сопротивления воздуха;
 
Координаты, полученные методом Верле при линейной зависимости силы сопротивлении воздуха от скорости;
 
Координаты, полученные из точного решения, при линейной зависимости силы сопротивлении воздуха от скорости;
 
Координаты, полученные методом Верле при квадратичной зависимости силы сопротивлении воздуха от скорости.
 
 
Посмотреть программу можно [http://tm.spbstu.ru/File:falling.zip здесь]
 
 
 
</div>
 
</div>
  
 
<div class="mw-collapsible mw-collapsed" style="width:100%" >
 
<div class="mw-collapsible mw-collapsed" style="width:100%" >
 
'''[[Белоусова Екатерина]]'''  
 
'''[[Белоусова Екатерина]]'''  
 
+
<br />
 
'''Описание программы''': пользователь вводит начальную скорость полета, угол бросания и шаг, с которым будут рассчитаны точки.  
 
'''Описание программы''': пользователь вводит начальную скорость полета, угол бросания и шаг, с которым будут рассчитаны точки.  
 
+
<br />
 
Программа записывает в один файл результаты вычисления:
 
Программа записывает в один файл результаты вычисления:
 
# Координаты, рассчитанные по формуле, при движении без сопротивления воздуха;  
 
# Координаты, рассчитанные по формуле, при движении без сопротивления воздуха;  
Строка 158: Строка 264:
 
# Координаты, полученные методом Верле при квадратичной зависимости силы сопротивлении воздуха от скорости.
 
# Координаты, полученные методом Верле при квадратичной зависимости силы сопротивлении воздуха от скорости.
 
# Координаты, полученные методом Верле при линейной зависимости силы сопротивлении воздуха от скорости;
 
# Координаты, полученные методом Верле при линейной зависимости силы сопротивлении воздуха от скорости;
 
+
<br />
 
Скачать можно  [http://tm.spbstu.ru/Файл:задача_3.zip тут].
 
Скачать можно  [http://tm.spbstu.ru/Файл:задача_3.zip тут].
 +
<br /><br />
  
 
<div class="mw-collapsible-content">
 
<div class="mw-collapsible-content">
  
 
[[File:формулы.png]]
 
[[File:формулы.png]]
 
+
<br /><br />
 
'''Визуализированный результат работы программы'''
 
'''Визуализированный результат работы программы'''
 
[[File:graph1.png]]
 
[[File:graph1.png]]
  
 
Для тела с массой 1 кг,сопротивлением воздуха 0.05, угол бросания 30°, начальная скорость 30 м/с, ускорение свободного падения 9.8 м/c^2, шаг 0.01;
 
Для тела с массой 1 кг,сопротивлением воздуха 0.05, угол бросания 30°, начальная скорость 30 м/с, ускорение свободного падения 9.8 м/c^2, шаг 0.01;
 
+
<br />
 
# "Zapis.txt" using 1 : 2 - координаты, рассчитанные по формуле, при движении без сопротивления воздуха;  
 
# "Zapis.txt" using 1 : 2 - координаты, рассчитанные по формуле, при движении без сопротивления воздуха;  
 
# "Zapis.txt" using 3 : 4 - координаты, полученные из точного решения, при линейной зависимости силы сопротивлении воздуха от скорости;
 
# "Zapis.txt" using 3 : 4 - координаты, полученные из точного решения, при линейной зависимости силы сопротивлении воздуха от скорости;
 
# "Zapis.txt" using 5 : 6 - координаты, полученные методом Верле при квадратичной зависимости силы сопротивлении воздуха от скорости;
 
# "Zapis.txt" using 5 : 6 - координаты, полученные методом Верле при квадратичной зависимости силы сопротивлении воздуха от скорости;
 
# "Zapis.txt" using 7 : 8 - координаты, полученные методом Верле при линейной зависимости силы сопротивлении воздуха от скорости.
 
# "Zapis.txt" using 7 : 8 - координаты, полученные методом Верле при линейной зависимости силы сопротивлении воздуха от скорости.
 
+
<br />
  
 
<syntaxhighlight lang="cpp" line start="1" enclose="div">
 
<syntaxhighlight lang="cpp" line start="1" enclose="div">
Строка 203: Строка 310:
 
     Brad=3.14159*Agrad/180.0; ///переводим значение угла из градусов в радианы
 
     Brad=3.14159*Agrad/180.0; ///переводим значение угла из градусов в радианы
  
     time=2*Vo*sin(Brad)/g; ///рассчитываем время полета тела
+
     time=2*Vo*sin(Brad)/g; ///расчитываем время полета тела
 
     amountdouble=(round(time/step)+1); ///подсчитываем количество точек с заданым шагом
 
     amountdouble=(round(time/step)+1); ///подсчитываем количество точек с заданым шагом
 
     amount=static_cast<int>(amountdouble); ///преобразуем количество из типа double к типу int
 
     amount=static_cast<int>(amountdouble); ///преобразуем количество из типа double к типу int
Строка 297: Строка 404:
  
 
}
 
}
 +
 +
 
</syntaxhighlight>
 
</syntaxhighlight>
 
</div>
 
</div>
 +
  
 
<div class="mw-collapsible mw-collapsed" style="width:100%" >
 
<div class="mw-collapsible mw-collapsed" style="width:100%" >
 
'''[[Васильева Анастасия]]'''  
 
'''[[Васильева Анастасия]]'''  
 
+
<br />
'''Описание программы''': пользователь вводит начальную скорость полета, угол падения и шаг, с которым будут рассчитаны точки.  
+
'''Описание программы''': пользователь вводит начальную скорость полета, угол бросания и шаг, с которым будут рассчитаны точки.  
 
+
<br />
 
Программа записывает в один файл результаты вычисления:
 
Программа записывает в один файл результаты вычисления:
 
# Координаты, рассчитанные по формуле, при движении без сопротивления воздуха;  
 
# Координаты, рассчитанные по формуле, при движении без сопротивления воздуха;  
Строка 310: Строка 420:
 
# Координаты, полученные методом Верле при квадратичной зависимости силы сопротивлении воздуха от скорости.
 
# Координаты, полученные методом Верле при квадратичной зависимости силы сопротивлении воздуха от скорости.
 
# Координаты, полученные из точного решения, при линейной зависимости силы сопротивлении воздуха от скорости;
 
# Координаты, полученные из точного решения, при линейной зависимости силы сопротивлении воздуха от скорости;
 
+
<br />
 
Скачать можно  [http://tm.spbstu.ru/Файл:fly.zip тут].
 
Скачать можно  [http://tm.spbstu.ru/Файл:fly.zip тут].
 
+
<br /><br />
  
 
<div class="mw-collapsible-content">
 
<div class="mw-collapsible-content">
  
 
+
<br /><br />
 
'''Визуализированный результат работы программы'''
 
'''Визуализированный результат работы программы'''
 
[[File:graphick.png]]
 
[[File:graphick.png]]
  
 
Для тела с массой 0.5 кг,сопротивлением воздуха 0.1, угол бросания 30°, начальная скорость 30 м/с, ускорение свободного падения 9.8 м/c^2, шаг 0.001;
 
Для тела с массой 0.5 кг,сопротивлением воздуха 0.1, угол бросания 30°, начальная скорость 30 м/с, ускорение свободного падения 9.8 м/c^2, шаг 0.001;
 
+
<br />
 
# "output.txt" using 1 : 2 - координаты, рассчитанные по формуле, при движении без сопротивления воздуха;  
 
# "output.txt" using 1 : 2 - координаты, рассчитанные по формуле, при движении без сопротивления воздуха;  
 
# "output.txt" using 3 : 4 - координаты, полученные из точного решения, при линейной зависимости силы сопротивлении воздуха от скорости (численное интегрирование - метод Эйлера);
 
# "output.txt" using 3 : 4 - координаты, полученные из точного решения, при линейной зависимости силы сопротивлении воздуха от скорости (численное интегрирование - метод Эйлера);
 
# "output.txt" using 5 : 6 - координаты, полученные методом Верле при квадратичной зависимости силы сопротивлении воздуха от скорости;
 
# "output.txt" using 5 : 6 - координаты, полученные методом Верле при квадратичной зависимости силы сопротивлении воздуха от скорости;
 
# "output.txt" using 7 : 8 - координаты, полученные методом Верле при линейной зависимости силы сопротивлении воздуха от скорости.
 
# "output.txt" using 7 : 8 - координаты, полученные методом Верле при линейной зависимости силы сопротивлении воздуха от скорости.
 
+
<br />
  
 
<syntaxhighlight lang="cpp" line start="1" enclose="div">
 
<syntaxhighlight lang="cpp" line start="1" enclose="div">
Строка 474: Строка 584:
 
     F1.FilePrint(); ///вызываем функцию для записи файла
 
     F1.FilePrint(); ///вызываем функцию для записи файла
 
}
 
}
 +
 +
 
</syntaxhighlight>
 
</syntaxhighlight>
 
</div>
 
</div>
  
'''[[Гильманов Илья]]'''
 
  
'''Описание программы''': программа состоит из четырех независимых друг от друга частей:
 
#  Полет тела без сопротивления воздуха;
 
#  Полет тела при линейной зависимости силы сопротивления воздуха от скорости, при котором координаты тела рассчитываются точным методом;
 
#  Полет тела при линейной зависимости силы сопротивления воздуха от скорости, при котором координаты тела рассчитываются методом Верле;
 
#  Полет тела при квадратичной зависимости силы сопротивлении воздуха от скорости, при котором координаты тела рассчитываются методом Верле;
 
  
Скачать можно [[http://mech.spbstu.ru/File:Движение_тела_в_среде.rar тут]]
+
'''[[Андреева Полина]]'''
  
<div class="mw-collapsible mw-collapsed" style="width:100%" >
+
'''краткое описание алгоритма''': в классе находятся координаты по формулам и записываются в файл.
'''[[Демченко Артём]]'''  
 
  
'''Описание программы''': программа записывает в четыре файла результаты вычисления:
+
''' инструкция ''':  
# Координаты, рассчитанные по формуле, при движении без сопротивления воздуха;  
+
Пользователь должен ввести начальную скорость, угол и шаг, с которым будут рассчитываться координаты. В файл координаты записываются в таком порядке: 1, 2 столбики - Координаты, рассчитанные по формуле, при движении без сопротивления воздуха; 3, 4 - Координаты, полученные методом Верле при линейной зависимости силы сопротивлении воздуха от скорости; 5,6 - Координаты, полученные из точного решения, при линейной зависимости силы сопротивлении воздуха от скорости; 7,8 - Координаты, полученные из точного решения, при линейной зависимости силы сопротивлении воздуха от скорости.  
# Координаты, полученные методом Верле при линейной зависимости силы сопротивлении воздуха от скорости;
 
# Координаты, полученные из точного решения, при линейной зависимости силы сопротивлении воздуха от скорости;
 
# Координаты, полученные методом Верле при квадратичной зависимости силы сопротивлении воздуха от скорости.
 
  
''' Инструкция ''':
+
Скачать можно  [http://tm.spbstu.ru/File:ТраекторияАнПол.rar тут].
Пользователь вводит начальные данные ( массу, скорость, угол броска, шаг по времени и сопротивление воздуха). Выбираем режим работы программы, после этого в папке с программой создается файл, который требуется открыть программой gnuplot для просмотра графика, построенного на полученных координатах.
 
 
 
 
 
<div class="mw-collapsible-content">
 
 
 
 
 
 
 
'''Визуализированный результат работы программы'''
 
 
 
[[:File:Throws.png]]
 
 
 
<syntaxhighlight lang="cpp" line start="1" enclose="div">
 
 
 
#include <iostream>
 
#include <math.h>
 
#include <iomanip>
 
#include <fstream>
 
#include <conio.h>
 
#include <stdio.h>
 
 
 
 
 
using namespace std;
 
 
 
double g = 9.8, Pi = 3.1415; // Задаем две глобальные переменные ускорения свободного падения и числа Pi
 
 
 
int WoutR(double alpha, double dt, double t, double Yo, double Vo) // Функция, записывающая в файл Throws Without Resistance.txt координаты тела, которое движется без сопротивления
 
{
 
    FILE *Coord;
 
  Coord = fopen ("Throws Without Resistance.txt", "w");
 
    double X = 0, Y = 0; // Координаты начала
 
 
 
    while ( Y >= Yo) // Yo используем для того, чтобы цикл прекратился тогда, когда тело упадет
 
    {
 
 
 
      X =  Vo*t*cos(alpha);
 
      Y =  Vo*t*sin(alpha) - (g*t*t)*0.5;
 
      t+= dt;
 
    if (Y > Yo )
 
        fprintf(Coord, "%.3lf \t %.3lf\n", X, Y);
 
    else
 
        fprintf(Coord, "%.3lf \t %.3lf\n", X, 0.000); // Используем такой else для того, чтобы не получить отрицательную координату
 
    }
 
 
 
}
 
 
 
int ExactForm(double alpha, double dt, double t, double Yo, double Vo, double R, double m) // Функция, записывающая в файл ExactForm.txt координаты тела, рассчитывающиеся по формлуе точного решения
 
{                                                                                          // для линейной зависимости
 
    FILE *Coord;
 
  Coord = fopen ("ExactForm.txt", "w");
 
    double X, Y = 0, Vx, Vy;
 
 
 
    while ( Y >= Yo) // Использование Yo аналогично использованию в прошлом пункте.
 
    {
 
 
 
      X = ((m*Vx)/R) * (1 - exp(((-1)*R*t)/m));
 
      Y = (m/R)*((Vy + (g*m)/R)*(1 - exp((-1)*R*t/m))) - (g*t*m)/R;
 
      Vx = Vo*cos(alpha);
 
      Vy = Vo*sin(alpha);
 
      t+= dt;
 
    if (Y > Yo )
 
        fprintf(Coord, "%.3lf \t %.3lf\n", X, Y);
 
    else
 
        fprintf(Coord, "%.3lf \t %.3lf\n", X, 0.000); // используется аналогично прошлому пункту
 
      }
 
}
 
 
 
int VerleSq (double alpha, double dt, double t, double Yo, double Xo, double Vo, double R, double m) // Функция, записывающая в файл VerleSq.txt оординаты тела, рассчитывающиеся по формлуе Верле
 
{                                                                                                    // для Квадратичной зависимости сопротивления от скорости
 
    FILE *Coord;
 
  Coord = fopen ("VerleSq.txt", "w");
 
 
 
    double X, Xnext, Xprev, Y, Ynext, Yprev, Vx, Vy, V, Yop, Xop; // X, Y - текущие координаты; Xnext, Ynext - координаты следующего шага; Xprev, Yprev - координаты предыдущего шага.
 
                                                                  // Xop, Yop - вспомогательные координаты для (-1)-го шага
 
 
 
    Yop = Yo - Vo*sin(alpha)*dt; // Сторки 62-79 используются для просчитывания (-1)-го шага, так как в точке 0;0 у нас нету предыдущего шага
 
    Xop = Xo - Vo*cos(alpha)*dt;
 
    X = Xo;
 
    Y = Yo;
 
    Xnext = 2.0*X - Xop - (R/m)*Vo*Vo*cos(alpha)*(dt*dt);
 
    Vx = (1.0/(2.0*dt))*(Xnext - Xop);
 
    Ynext = 2.0*Y - Yop - (g +(R/m)*Vo*Vo*sin((alpha)))*(dt*dt);
 
    Vy =  (1.0/(2.0*dt))*(Ynext - Yop);
 
    V = sqrt((Vo*cos(alpha)*Vo*cos(alpha)) + (Vo*sin(alpha)*Vo*sin(alpha)));
 
 
 
    fprintf(Coord, "%.3lf \t %.3lf\n", X, Y); // Записываем первую координату в файл
 
 
 
    Xprev = X; // Меняем координаты местами. Так (n-1)-ый шаг становится n-ым шагом, n-ый шаг становится (n+1)-ым шагом. Далее аналогично
 
    X = Xnext;
 
    Yprev = Y;
 
    Y = Ynext;
 
 
 
 
 
    while (Y >= Yo) // После выполнения строк 62-79 получаем все необходимые данные для выполнения алгоритма.
 
    {
 
    Xnext = 2.0*X - Xprev - (R/m)*V*Vx*(dt*dt);
 
    Vx = (1.0/(2.0*dt))*(Xnext - Xprev);
 
    Ynext = 2.0*Y - Yprev - (g +(R/m)*V*Vy)*(dt*dt);
 
    Vy =  (1.0/(2.0*dt))*(Ynext - Yprev);
 
    V = sqrt((Vx*cos(alpha)*Vx*cos(alpha)) + (Vy*sin(alpha) - g*dt)*(Vy*sin(alpha) - g*dt));
 
    if (Ynext > Yo )
 
        fprintf(Coord, "%.3lf \t %.3lf\n", Xnext, Ynext);
 
    else
 
 
 
      fprintf(Coord, "%.3lf \t %.3lf\n", X, 0.000);
 
 
 
    Xprev = X;
 
    X = Xnext;
 
    Yprev = Y;
 
    Y = Ynext;
 
    }
 
 
 
}
 
int VerleL (double alpha, double dt, double t, double Yo, double Xo, double Vo, double R, double m) // Функция, записывающая в файл VerleL.txt оординаты тела, рассчитывающиеся по формлуе Верле
 
{                                                                                                  // для линейной зависимости сопротивления от скорости
 
    FILE *Coord;
 
  Coord = fopen ("VerleL.txt", "w");
 
 
 
    double X, Xnext, Xprev, Y, Ynext, Yprev, Vx, Vy, V,Yop, Xop; // Комментарии аналогичны переменным и формулам в VtrleSq
 
 
 
    Yop = Yo - Vo*sin(alpha)*dt;
 
    Xop = Xo - Vo*cos(alpha)*dt;
 
    X = Xo;
 
    Y = Yo;
 
    Xnext = 2.0*X - Xop - (R/m)*Vo*Vo*cos(alpha)*(dt*dt);
 
    Vx = (1.0/(2.0*dt))*(Xnext - Xop);
 
    Ynext = 2.0*Y - Yop - (g +(R/m)*Vo*Vo*sin((alpha)))*(dt*dt);
 
    Vy =  (1.0/(2.0*dt))*(Ynext - Yop);
 
    V = sqrt((Vo*cos(alpha)*Vo*cos(alpha)) + (Vo*sin(alpha)*Vo*sin(alpha)));
 
 
 
    fprintf(Coord, "%.3lf \t %.3lf\n", X, Y);
 
 
 
    Xprev = X;
 
    X = Xnext;
 
    Yprev = Y;
 
    Y = Ynext;
 
 
 
 
 
    while (Y >= Yo)
 
    {
 
    Xnext = 2.0*X - Xprev - (R/m)*Vx*(dt*dt);
 
    Vx = (1.0/(2.0*dt))*(Xnext - Xprev);
 
    Ynext = 2.0*Y - Yprev - (g +(R/m)*Vy)*(dt*dt);
 
    Vy =  (1.0/(2.0*dt))*(Ynext - Yprev);
 
  if (Ynext > Yo )
 
        fprintf(Coord, "%.3lf \t %.3lf\n", Xnext, Ynext);
 
    else
 
      fprintf(Coord, "%.3lf \t %.3lf\n", Xnext, 0.000);
 
 
 
    Xprev = X;
 
    X = Xnext;
 
    Yprev = Y;
 
    Y = Ynext;
 
    }
 
 
 
}
 
 
 
int main()
 
{
 
  double alpha, Vo, dt, R, m , t = 0, Yo = 0, Xo = 0; // Объявляем переменные: alpha - угол броска; Vo - начальная скорость; dt - шаг по времени; R- коэф. сопротивления; m- масса тела;
 
                                                      // t = 0 - начало отсчета времени с 0; Yo = 0, Xo = 0 - координаты начала
 
  int i = 0; // переменная для оператора switch
 
 
 
  cout << "Enter start speed:\n";
 
  cin >> Vo; // Вводим с клавиатуры начальную скорость
 
  cout << "Enter angle in grades ( from 0 to 180 ):\n";
 
  cin >> alpha; // Вводим с клавиатуры угол броска в градусах
 
  alpha = alpha*Pi / 180; // переводим угол броска из градусов в радианы
 
  cout << "Enter mass:\n";
 
  cin >> m; // Вводим с клавиатуры массу
 
  cout << "Enter precision:\n";
 
  cin >> dt; // Вводим с клавиатуры шаг по времени
 
  cout << "Enter resistance:\n";
 
  cin >> R; // Вводим сопротивление воздуха
 
  cout << "Press 1 to draw graph without resistance\n\n"
 
          "Press 2 to draw graph in Exact form\n\n"
 
          "Press 3 to draw graph in VerleSq form\n\n"
 
          "Press 4 to draw graph in VerleL form\n\n"
 
          "Press 5 to draw all graphs at the same time\n\n"
 
          "Press 0 to quit\n\n";
 
  cin >> i;
 
  cout << "\nPress any button\n";
 
 
 
 
 
    FILE *Gnu;
 
    Gnu = fopen ("Throws.gp", "w"); // Создаем файл формата gp, который будем открывать программой gnuplot для того, чтобы построить наш график/ки по точкам
 
 
 
switch ( i )
 
{
 
case 1:
 
    {
 
    WoutR(alpha,dt,t,Yo,Vo);
 
    fprintf(Gnu, "plot \"Throws Without Resistance.txt\" using 1:2 w l");
 
    break;
 
    }
 
case 2:
 
    {
 
    ExactForm(alpha,dt,t,Yo,Vo,R,m);
 
    fprintf(Gnu, "plot \"ExactForm.txt\" using 1:2 w l");
 
    break;
 
    }
 
case 3:
 
    {
 
    VerleSq(alpha,dt,t,Yo,Xo,Vo,R, m);
 
    fprintf(Gnu, "plot \"VerleSq.txt\" using 1:2 w l");
 
    break;
 
    }
 
case 4:
 
    {
 
    VerleL(alpha,dt,t,Yo,Xo,Vo,R, m);
 
    fprintf(Gnu, "plot \"VerleL.txt\" using 1:2 w l");
 
    break;
 
    }
 
case 5:
 
    {
 
  WoutR(alpha,dt,t,Yo,Vo);
 
  ExactForm(alpha,dt,t,Yo,Vo,R,m);
 
  VerleSq(alpha,dt,t,Yo,Xo,Vo,R, m);
 
  VerleL(alpha,dt,t,Yo,Xo,Vo,R, m);
 
  fprintf(Gnu, "plot \"Throws Without Resistance.txt\" using 1:2 w l, \"ExactForm.txt\" using 1:2 w l, \"VerleSq.txt\" using 1:2 w l, \"VerleL.txt\" using 1:2 w l"); // записываем в Throws.gp названия четырех файлов
 
  break;
 
    }                                                  // с координатами таким образом, чтобы программа gnuplot смогла их увидеть и прочесть
 
case 0:
 
    break;
 
default:
 
    break;
 
}
 
    return 0;
 
}
 
 
 
</syntaxhighlight>
 
</div>
 
  
  
 
'''[[Иванова Яна]]'''
 
'''[[Иванова Яна]]'''
 
+
<br />
 
'''Описание программы''': в программе выполняются четыре метода подсчета координат тела, брошенного под углом к горизонту. Координаты записываются в файл, строятся четыре графика, иллюстрирующие поведение тела при полете. Код написан для определенных начальных условий (для примера), если Вы хотите выполнить расчет для другой конфигурации, внесите изменения в начальные данные программы в самом коде.
 
'''Описание программы''': в программе выполняются четыре метода подсчета координат тела, брошенного под углом к горизонту. Координаты записываются в файл, строятся четыре графика, иллюстрирующие поведение тела при полете. Код написан для определенных начальных условий (для примера), если Вы хотите выполнить расчет для другой конфигурации, внесите изменения в начальные данные программы в самом коде.
 
Начальная скорость: 40 м/с, угол бросания: 45 градусов, коэффициент сопротивления воздуха: 0.023, шаг по времени : 0.1 секунды.
 
Начальная скорость: 40 м/с, угол бросания: 45 градусов, коэффициент сопротивления воздуха: 0.023, шаг по времени : 0.1 секунды.
 
+
<br />
 
Скачать программу можно [http://tm.spbstu.ru/File:main.zip здесь]
 
Скачать программу можно [http://tm.spbstu.ru/File:main.zip здесь]
 +
<br />
  
<div class="mw-collapsible-content">
+
<div class="mw-collapsible mw-collapsed" style="width:100%" >
 
'''Визуализированный результат работы программы'''[[File:graph.png]]
 
'''Визуализированный результат работы программы'''[[File:graph.png]]
 
+
<br />
 
  [[:File:graph.png]]
 
  [[:File:graph.png]]
 
+
<br />
 
<syntaxhighlight lang="cpp" line start="1" enclose="div">
 
<syntaxhighlight lang="cpp" line start="1" enclose="div">
 
#include <iostream>
 
#include <iostream>
Строка 865: Строка 737:
 
</syntaxhighlight>
 
</syntaxhighlight>
 
</div>
 
</div>
 +
<br /><br />
  
<div>
 
  
'''[[Капитанюк Светлана]]'''
+
'''[[Уманский Александр]]'''  
 
 
'''Описание программы''' : программа записывает в четыре файла результаты вычисления:
 
 
 
Координаты, рассчитанные по формуле, при движении без сопротивления воздуха;
 
Координаты, полученные методом Верле при линейной зависимости силы сопротивлении воздуха от скорости;
 
Координаты, полученные из точного решения, при линейной зависимости силы сопротивлении воздуха от скорости;
 
Координаты, полученные методом Верле при квадратичной зависимости силы сопротивлении воздуха от скорости.
 
 
 
Скачивать [http://tm.spbstu.ru/File:Point_03.zip тут]
 
 
 
</div>
 
 
 
<div>
 
'''[[Киселёв Лев]]'''
 
 
 
'''Описание программы''': программа рассчитывает координаты точки при следующих случаях
 
#  Полет тела без сопротивления воздуха;
 
#  Полет тела при линейной зависимости силы сопротивления воздуха от скорости, при котором координаты тела рассчитываются точным методом;
 
#  Полет тела при линейной зависимости силы сопротивления воздуха от скорости, при котором координаты тела рассчитываются методом Верле;
 
#  Полет тела при квадратичной зависимости силы сопротивлении воздуха от скорости, при котором координаты тела рассчитываются методом Верле;
 
 
 
Скачать можно [[http://mech.spbstu.ru/File:3zadanie.rar тут]]
 
</div>
 
  
 
<div class="mw-collapsible mw-collapsed" style="width:100%" >
 
<div class="mw-collapsible mw-collapsed" style="width:100%" >
'''[[Лебедев Станислав]]'''
+
<br />
 
 
 
'''Описание программы''': программа записывает в четыре файла результаты вычисления:
 
'''Описание программы''': программа записывает в четыре файла результаты вычисления:
 
# Координаты, рассчитанные по формуле, при движении без сопротивления воздуха;  
 
# Координаты, рассчитанные по формуле, при движении без сопротивления воздуха;  
Строка 902: Строка 750:
 
# Координаты, полученные методом Верле при квадратичной зависимости силы сопротивлении воздуха от скорости.
 
# Координаты, полученные методом Верле при квадратичной зависимости силы сопротивлении воздуха от скорости.
  
Скачать можно  [http://tm.spbstu.ru/Файл:Шарик.rar тут].
+
<br />
  
<div class="mw-collapsible-content">
+
[[File:Methods.rar|Скачать архив]]
 +
<br /><br />
  
 
[[File:1.png]]
 
[[File:1.png]]
  
  
'''Визуализированный результат работы программы'''
 
[[File:graph.png]]
 
 
# o1 - координаты, рассчитанные по формуле, при движении без сопротивления воздуха;
 
# o2 - координаты, полученные методом Верле при линейной зависимости силы сопротивлении воздуха от скорости;
 
# o3 - координаты, полученные из точного решения, при линейной зависимости силы сопротивлении воздуха от скорости;
 
# o4 - координаты, полученные методом Верле при квадратичной зависимости силы сопротивлении воздуха от скорости.
 
 
 
Для тела с массой 10,сопротивлением воздуха 1, угол бросания 30°, начальная скорость 30 м/с, ускорение свободного падения 9.8 м/c^2;
 
 
''Примечание: графики o1 и o2 намеренно посчитаны с малой точностью, чтобы графики не сливались.''
 
 
Файл "'''main.cpp'''"
 
<syntaxhighlight lang="cpp" line start="1" enclose="div">
 
#include <iostream>
 
#include <math.h>
 
#include "Vector.h"
 
#include <cstring>
 
#include <cmath>
 
#include <malloc.h>
 
#include <fstream>
 
 
using namespace std;
 
 
int n = 100;
 
ofstream outfile;
 
 
class Ball                                          //класс бросаемого тела
 
{
 
    private:
 
        double angle,m,k;                          //угол броска,масса,коэффицент сопротивления воздуха
 
        Vector3D r,v,a;                            //радиус-вектор,вектор скорости,ускорения
 
    public:
 
 
        //задание начальных параметров через угол,начальное положение,скорость и ускорение,с которым движется тело. Без сопротивления воздуха
 
        Ball(double _angle, Vector3D _r, Vector3D _v, Vector3D _a)
 
        {
 
            angle = _angle;
 
            r    = _r;
 
            v    = _v;
 
            a    = _a;
 
        }
 
 
        //задание начальных параметров через угол,начальное положение,скорость и ускорение,с которым движется тело. Без сопротивления воздуха
 
        Ball(double _angle, double _m, double _k, Vector3D _r, Vector3D _v, Vector3D _a)
 
        {
 
            angle = _angle;
 
            r    = _r;
 
            v    = _v;
 
            a    = _a;
 
            m    = _m;
 
            k    = _k;
 
        }
 
 
        //точная формула зависимости координаты от времени
 
        Vector3D positionReal(double t)
 
        {
 
            double c1 = m/k,c2 = fabs(a.y)*c1, c3 = exp(-t/c1), c4 = c2*t;
 
            return MakeVector(v.x*c1*(1 - c3), c1*(v.y + c2)*(1 - c3) - c4 , 0 );
 
        }
 
 
        //вывод положения на экран
 
        void writePosToScreen()
 
        {
 
            cout << r.x << "  " << r.y << "  " << r.z << endl;
 
        }
 
  
        //вывод положения в файл
 
        void writePosToFile(char s[])
 
        {
 
            outfile.open(s,ios :: app);
 
            outfile << r.x << "          " << r.y << endl;
 
            outfile.close();
 
        }
 
 
        //вывод произвольного вектора на экран
 
        void WVTS(Vector3D v)
 
        {
 
            cout.width(15);
 
            cout << v.x;
 
            cout.width(15);
 
            cout << v.y;
 
            cout.width(15);
 
            cout << v.z << endl;
 
        }
 
 
        //вывод произвольного вектора в файл
 
        void WVTF(Vector3D v,char s[])
 
        {
 
            outfile.open(s,ios :: app);
 
            outfile << v.x << "          " << v.y << endl;
 
            outfile.close();
 
        }
 
 
        //"пересчет" координаты по Верле(Линейная зависмость)
 
        void changeR(Vector3D r1, double dt)
 
        {
 
            r = MakeVector(2 * r.x -  r1.x - k/m*v.x*dt*dt,2*r.y - r1.y - (abs(a.y) + k/m*v.y)*dt*dt, 0 );
 
        }
 
 
        //"пересчет" координаты по Верле(Квадратичная зависимость)
 
        void changeRSQ(Vector3D r1, double dt)
 
        {
 
            r = MakeVector(2 * r.x -  r1.x - k/m*Length(v)*v.x*dt*dt,2*r.y - r1.y - (abs(a.y) + k/m*Length(v)*v.y)*dt*dt, 0 );
 
        }
 
        //пересчет скорости по Верле
 
        void changeV(Vector3D r1,double dt)
 
        {
 
            v =VS((VmV(r,r1)),1/(2*dt));
 
        }
 
 
        //рассчет предыдущегт к 0ому элементу
 
        Vector3D MR1(double dt)
 
        {
 
            return MakeVector(r.x - v.x * dt,r.y - v.y * dt,0);
 
        }
 
 
        //возращает координату тела
 
        Vector3D getR()
 
        {
 
            return r;
 
        }
 
 
        //рассчет времени полета
 
        double TimeOfFly()
 
        {
 
            return (2*Length(v)*sin(angle)/Length(a));
 
        }
 
 
        //рассчет координаты по точной формуле. без сопротивления воздуха.
 
        Vector3D position(double t)
 
        {
 
            return MakeVector(r.x + v.x*t + a.x*t*t/2,r.y + v.y*t + a.y*t*t/2,r.z + v.z*t + a.z*t*t/2);
 
        }
 
 
};
 
 
int main()
 
{
 
    //задание начальных параметров
 
    Vector3D g = {0,-9.8,0};
 
    double a,dt = 0;
 
    char s[20];
 
 
//    cin >> dt;
 
 
    dt = 0.1;
 
    a = (M_PI * 30)/180;
 
    Ball b1(a, MakeVector(0,0,0),MakeVector(30,a),g);
 
 
    double tof = b1.TimeOfFly()+1;  //единичка прибавлена,чтобы график красивым был
 
 
    //Без сопротивления возлуха
 
    strcpy(s,"");
 
    strcat(s, "o1.txt");
 
    outfile.open(s, ios :: trunc);
 
    outfile.close();
 
    for (double i = 0; i <= tof; i += dt)
 
    {
 
        b1.WVTS(b1.position(i));
 
        b1.WVTF(b1.position(i), s);
 
    }
 
 
 
    //Верле(Линейная зависимость)
 
    dt = 0.1;
 
    a = (M_PI * 30)/180;
 
    Ball b2(a,10 , 1, MakeVector(0,0,0),MakeVector(30,a),g);
 
 
    strcpy(s,"");
 
    strcat(s, "o2.txt");
 
    outfile.open(s,ios :: trunc);
 
    outfile.close();
 
    Vector3D r1 = b2.MR1(dt),rp;
 
    for (double i = 0; i <= 20; i += dt)
 
    {
 
        rp = b2.getR();
 
        b2.writePosToFile(s);
 
        b2.writePosToScreen();
 
        b2.changeR(r1,dt);
 
        b2.changeV(r1,dt);
 
        r1.x = rp.x;
 
        r1.y = rp.y;
 
    }
 
 
    //Точное решение (Линейная зависимость)
 
    dt = 0.1;
 
    a = (M_PI * 30)/180;
 
    Ball b3(a,10 , 1, MakeVector(0,0,0),MakeVector(30,a),g);
 
 
    strcpy(s,"");
 
    strcat(s, "o3.txt");
 
    outfile.open(s, ios :: trunc);
 
    outfile.close();
 
    for (double i = 0; i <= 20; i += dt)
 
    {
 
        b3.WVTS(b3.positionReal(i));
 
        b3.WVTF(b3.positionReal(i), s);
 
    }
 
 
 
    //Верле (Квадратичная зависимость)
 
    dt = 0.1;
 
    a = (M_PI * 30)/180;
 
    Ball b4(a,10 , 1, MakeVector(0,0,0),MakeVector(30,a),g);
 
 
    strcpy(s,"");
 
    strcat(s, "o4.txt");
 
    outfile.open(s, ios :: trunc);
 
    outfile.close();
 
    r1 = b4.MR1(dt);
 
    for (double i = 0; i <= 20; i += dt)
 
    {
 
        rp = b4.getR();
 
        b4.writePosToFile(s);
 
        b4.writePosToScreen();
 
        b4.changeRSQ(r1,dt);
 
        b4.changeV(r1,dt);
 
        r1.x = rp.x;
 
        r1.y = rp.y;
 
    }
 
 
    return 0;
 
}
 
</syntaxhighlight>
 
 
Файл "'''Vector.h'''"
 
<syntaxhighlight lang="cpp" line start="1" enclose="div">
 
#ifndef VECTOR_H_INCLUDED
 
#define VECTOR_H_INCLUDED
 
 
struct Vector3D
 
{
 
  double x,y,z;
 
};
 
 
Vector3D VmV(Vector3D v1,Vector3D v2)              //векторное вычитание
 
{
 
    Vector3D v = {v1.x - v2.x,v1.y - v2.y,v1.z - v2.z };
 
    return v;
 
};
 
Vector3D VpV(Vector3D v1,Vector3D v2)              //векторное сложение
 
{
 
    Vector3D v = {v1.x + v2.x,v1.y + v2.y,v1.z + v2.z };
 
    return v;
 
}
 
 
double VV(Vector3D v1,Vector3D v2)              //скалярное умножение
 
{
 
  return (v1.x*v2.x + v1.y*v2.y + v1.z*v2.z);
 
}
 
 
Vector3D VxV(Vector3D v1,Vector3D v2)              //векторное умножение
 
{
 
  Vector3D v = {v1.y*v2.z - v1.z*v2.y, v1.z*v2.x - v1.x*v2.z,v1.x*v2.y - v1.y*v2.x};
 
  return v;
 
}
 
 
bool Kol(Vector3D v1,Vector3D v2)
 
{
 
  return ((v1.x/v2.x == v1.y/v2.y)&&(v1.z/v2.z == v1.y/v2.y))? true:false;
 
}
 
 
Vector3D VS(Vector3D v1, double s)
 
{
 
    Vector3D v = {v1.x*s, v1.y*s, v1.z*s};
 
    return v;
 
}
 
 
double Length(Vector3D v1)
 
{
 
    return sqrt(VV(v1,v1));
 
}
 
 
Vector3D MakeVector(double x,double y,double z)
 
{
 
    Vector3D v = {x,y,z};
 
    return v;
 
}
 
 
Vector3D MakeVector(double length,double angle)
 
{
 
    Vector3D v = {length * cos(angle), length * sin(angle),0};
 
    return v;
 
}
 
 
double Proection(Vector3D base, Vector3D dir)
 
{
 
    return (VV(base,dir)/Length(base));
 
}
 
#endif // VECTOR_H_INCLUDED
 
</syntaxhighlight>
 
</div>
 
 
 
<div>
 
'''[[Лобанов Илья]]'''
 
 
'''Описание программы''' : программа записывает в четыре файла результаты вычисления:
 
 
Координаты, рассчитанные по формуле, при движении без сопротивления воздуха;
 
Координаты, полученные методом Верле при линейной зависимости силы сопротивлении воздуха от скорости;
 
Координаты, полученные из точного решения, при линейной зависимости силы сопротивлении воздуха от скорости;
 
Координаты, полученные методом Верле при квадратичной зависимости силы сопротивлении воздуха от скорости.
 
 
 
'''Краткая инструкция''':
 
 
В окне консоли пользователю предлагается вывести следующие значения: начальную скорость , угол и шаг.
 
После этого полученные в результате работы программы данные выводятся в файл.
 
 
Скачивать [[http://tm.spbstu.ru/File:Air.rar тут]]
 
[[http://tm.spbstu.ru/File:phys.rar тут]]
 
 
</div>
 
 
<div class="mw-collapsible mw-collapsed" style="width:100%" >
 
 
'''[[Лосева Татьяна ]]'''  
 
'''[[Лосева Татьяна ]]'''  
 
 
'''Описание:''' Пользователя попросят ввести начальную скорость,угол бросания,массу тела  и коэф.сопротивления воздуха,тогда программа запишет в 4 разных файла результаты следующих вычислений:
 
'''Описание:''' Пользователя попросят ввести начальную скорость,угол бросания,массу тела  и коэф.сопротивления воздуха,тогда программа запишет в 4 разных файла результаты следующих вычислений:
 
# Координаты, рассчитанные по формуле, при движении без сопротивления воздуха;  
 
# Координаты, рассчитанные по формуле, при движении без сопротивления воздуха;  
Строка 1234: Строка 765:
 
# Координаты, полученные методом Верле при квадратичной зависимости силы сопротивлении воздуха от скорости.
 
# Координаты, полученные методом Верле при квадратичной зависимости силы сопротивлении воздуха от скорости.
 
# Координаты, полученные из точного решения, при линейной зависимости силы сопротивлении воздуха от скорости;
 
# Координаты, полученные из точного решения, при линейной зависимости силы сопротивлении воздуха от скорости;
 
<div class="mw-collapsible-content">
 
  
 
''Графики полученные при скорости =10 m/c;угле = 30 градусам;массе=10 кг;коэф.сопротивления=1;''
 
''Графики полученные при скорости =10 m/c;угле = 30 градусам;массе=10 кг;коэф.сопротивления=1;''
Строка 1399: Строка 928:
 
</div>
 
</div>
  
Скачать можно  [http://tm.spbstu.ru/Файл:Verle.rar  тут].
 
  
<div>
 
  
'''[[Ляжков Сергей]]'''
 
  
'''Описание программы''': Программа рассчитывает координаты полета тела по х и у. Как и в программе шахмат и интерполяции, здесь представлено меню выбора функций. Вы вводите начальные координаты, начальную скорость и угол полета(например, мяча или снаряда)(Нет смысла вводить величину скорости света, так как парабола вряд ли получится).
+
Скачать можно  [http://tm.spbstu.ru/Файл:Verle.rar  тут].
Затем Вы выбираете в меню "вариант" сопротивления воздуха, после чего вводите массу тела и коэффициент сопротивления среды(без сопротивления воздуха этим можно пренебречь). Программа выводит массив точек и сохраняет их в текстовый файл. Эти точки - координаты полета до тех пор, пока значения y не станет ОТРИЦАТЕЛЬНЫМИ...
 
Это мой первый проект по моделированию, спасибо за предоставленную возможность попрактиковаться.
 
Скачать можно [[http://mech.spbstu.ru/File:Полет.zip тут]]
 
</div>
 
 
 
<br>'''[[Нарядчиков Александр]]'''<br>
 
'''Инструкция:''' Пользователю достаточно просто запустить программу.<br>
 
'''Описание программы:''' В комнате скачут 4 мячика, первый двигается без сопротивления воздуха, второй двигается с квадратичной зависимостью сопротивления воздуха от скорости (Метод Верле), третий двигается с линейной зависимостью сопротивления воздуха от скорости (точное решение), четвертый двигается с линейной зависимостью сопротивления воздуха от скорости (Метод Верле).<br>
 
'''Описание алгоритма:''' Программа реализована с помощью системы анимации(class anim), используя библиотеки OpenGl и GLUT. Изменения координат мячей проходят в режиме реального времени в векторной форме.<br>
 
<div class="mw-collapsible mw-collapsed" style="width:100%" >
 
"'''T06BALL.CPP'''"
 
<syntaxhighlight lang="cpp" line start="1" enclose="div">
 
/* FILENAME: T06BALL.CPP
 
* LAST UPDATE: 17.01.2016
 
*/
 
 
 
#include "ANIM.H"
 
#include "SAMPLE.H"
 
 
 
/* Main function */
 
void main( void )
 
{
 
// Получение единственного экземпляра класса анимации
 
sagl::anim &My = sagl::anim::Get();
 
 
 
// Шар, летящий без сопротивлением воздуха
 
        for (int i = 0; i < 1; i++)
 
                My << new ball(Pi / 6, 10 + i);
 
 
 
// Шар, летящий с сопротивлением воздуха
 
// Координаты получены методом Верле при квадратичной зависимости силы сопротивлении воздуха от скорости
 
for (int i = 0; i < 1; i++)
 
My << new ball_air(Pi / 6, 10 + i, 10, 0.01);
 
 
 
// Шар, летящий с сопротивлением воздуха
 
// Координаты получены из точного решения при линейной зависимости силы сопротивлении воздуха от скорости
 
for (int i = 0; i < 1; i++)
 
My << new ball_air_2(Pi / 6, 10 + i, 10, 0.01);
 
 
 
// Шар, летящий с сопротивлением воздуха
 
// Координаты получены методом Верле при линейной зависимости силы сопротивлении воздуха от скорости
 
for (int i = 0; i < 1; i++)
 
My << new ball_air_3(Pi / 6, 10 + i, 10, 0.01);
 
 
 
// Запуск главного цикла
 
  My.Run();
 
} // End of 'main' function
 
 
 
// END OF 'T43ANIM.CPP' FILE
 
</syntaxhighlight>
 
"'''ANIM.CPP'''"
 
<syntaxhighlight lang="cpp" line start="1" enclose="div">
 
/* FILENAME: ANIM.CPP
 
* LAST UPDATE: 17.01.2016
 
*/
 
 
 
#include <stdio.h>
 
#include <stdlib.h>
 
#include <time.h>
 
 
 
#include "ANIM.H"
 
 
 
// Единственный экземпляр класса
 
sagl::anim sagl::anim::Instance;
 
 
 
/* Reshape function */
 
// Стандартная функция, вызываемая при изменении размеров окна
 
void sagl::anim::Reshape( int W, int H )
 
{
 
  // Установка области просмотра - все окно
 
glViewport(0, 0, W, H);
 
  Instance.WinW = W;
 
  Instance.WinH = H;
 
  double ratio_x = 1, ratio_y = 1;
 
  if (W > H)
 
    ratio_x = (double)W / H;
 
  else
 
    ratio_y = (double)H / W;
 
  double Size = 1, Near = 1, Far = 500;
 
  // Установка системы координат "камеры"
 
glMatrixMode(GL_PROJECTION);
 
  glLoadIdentity();
 
  glFrustum(-Size * ratio_x, Size * ratio_x,
 
            -Size * ratio_y, Size * ratio_y,
 
            Near, Far);
 
// Установка "мировой" СК в состояние без преобразований
 
  glMatrixMode(GL_MODELVIEW);
 
} // End of 'Reshape' function
 
 
 
/* Timer function */
 
// Подсчет времени
 
void sagl::anim::Timer( void )
 
{
 
  long Time = clock();
 
 
 
  if (IsPause)
 
    DeltaTime = 0, PauseTime += Time - OldTime;
 
  else
 
    DeltaTime = (Time - OldTime) / (double)CLOCKS_PER_SEC;
 
  OldTime = Time;
 
 
 
  SyncTime = (Time - PauseTime - StartTime) / (double)CLOCKS_PER_SEC;
 
} /* End of 'Timer' function */
 
 
 
/* Display function */
 
// Стандартная функция, вызываемая при перерисовке окна
 
void sagl::anim::Display( void )
 
{
 
// Запуск времени
 
Instance.Timer();
 
// Очищаем цветовой буфер для создания нового изображения
 
  glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
 
 
 
  glLoadIdentity();
 
  // Позиционирование СК
 
gluLookAt(-40, 0, 0, 0, 0, 0, 0, 1, 0);
 
 
 
// Отрисовка объектов
 
  Instance.Render();
 
 
 
  glFinish();
 
// Копируем вторичный буфер в окно
 
glutSwapBuffers();
 
// Вызываем функцию обновления кадра
 
glutPostRedisplay();
 
} // End of 'Display' function
 
 
 
/* Keyboard function */
 
// Стандартная функция, вызываемая при нажатие клавиш на клавиатуре
 
void sagl::anim::Keyboard( unsigned char Key, int X, int Y )
 
{
 
// Выход из программы
 
if (Key == 27)
 
    exit(0);
 
// Открытие программы в полном экране
 
else if (Key == 'f')
 
    glutFullScreen();
 
  // Пауза
 
else if (Key == 'p' || Key == 'P')
 
    Instance.IsPause = !Instance.IsPause;
 
} // End of 'Keyboard' function
 
 
 
sagl::anim::anim( void ) : IsPause(false), SyncTime(0), DeltaTime(0),
 
  StartTime(clock()), OldTime(StartTime), PauseTime(0), StockSize(0)
 
{
 
// Инициализации OpenGL и GLUT
 
glutInitDisplayMode(GLUT_RGB | GLUT_DOUBLE | GLUT_DEPTH);
 
 
 
// Задача размеров и позиции окна
 
glutInitWindowPosition(0, 0);
 
  glutInitWindowSize(700, 700);
 
// Создание окна
 
glutCreateWindow("T06BALL");
 
 
 
// Установка функций 'обратного вызова'
 
  glutDisplayFunc(Display);
 
  glutKeyboardFunc(Keyboard);
 
  glutReshapeFunc(Reshape);
 
 
 
// Установка цвета закраски фона
 
  glClearColor(0.3, 0.5, 0.7, 1);
 
  // Включение буфера глубины
 
glEnable(GL_DEPTH_TEST);
 
  // Включение режима вычисления цвета согласно освещенности от источников света
 
glEnable(GL_LIGHTING);
 
// Включение источника света
 
  glEnable(GL_LIGHT0);
 
// Включение упрощенного режима освещенности для простого способа описания свойств поверхности
 
  glEnable(GL_COLOR_MATERIAL);
 
// Приведение нормалей к единичной длине
 
  glEnable(GL_NORMALIZE);
 
}
 
 
 
// Деструктор
 
sagl::anim::~anim( void )
 
{
 
  // Чистка памяти
 
for (int i = 0; i < StockSize; i++)
 
    delete Stock[i];
 
}
 
 
 
/* Render function */
 
// Отрисовка объектов
 
void sagl::anim::Render( void )
 
{
 
for (int i = 0; i < StockSize; i++)
 
Stock[i]->Render(*this);
 
} // End of 'Render' function
 
 
 
/* Run function */
 
// Запуск главного цикла
 
void sagl::anim::Run( void )
 
{
 
// Запуск основного цикла построения
 
glutMainLoop();
 
} // End of 'Run' function
 
 
 
// END OF 'ANIM.CPP' FILE
 
</syntaxhighlight>
 
"'''ANIM.H'''"
 
<syntaxhighlight lang="cpp" line start="1" enclose="div">
 
/* FILENAME: ANIM.H
 
* LAST UPDATE: 17.01.2016
 
*/
 
 
 
#ifndef __ANIM_H_
 
#define __ANIM_H_
 
 
 
#include <stdio.h>
 
#include <stdlib.h>
 
#include <time.h>
 
 
 
#include <GL\glut.h>
 
 
 
#include "VEC.H"
 
 
 
// Константы
 
#define Pi 3.14159265358979323846
 
#define E 2.71828182845904523536
 
 
 
// Собственное пространство имен 'sagl'
 
namespace sagl
 
{
 
  // Объявления класса анимации наперед
 
class anim;
 
 
 
// Функции получения случайных чисел
 
inline double r0( void )
 
  {
 
    return rand() / (double)RAND_MAX;
 
  }
 
  inline double r1( void )
 
  {
 
    return 2.0 * rand() / RAND_MAX - 1;
 
  }
 
 
 
// Класс объектов
 
class object
 
  {
 
  public:
 
    // Вектора перемещения и скоростей
 
vec P, V, AbsV;
 
   
 
// Конструктор
 
object( void ) : P(vec::Rnd1()), V(vec::Rnd()), AbsV(V)
 
    {
 
    }
 
 
// Отрисовка объектов
 
virtual void Render( anim &Ani )
 
    {
 
    } // End of 'Render' function
 
  }; // end of 'object' class
 
 
 
// Класс анимации
 
class anim
 
  {
 
  private:
 
    // Функции 'обратного вызова'
 
static void Display( void );
 
    static void Keyboard( unsigned char Key, int X, int Y );
 
    static void Reshape( int W, int H );
 
 
 
    // Единственный экземпляр класса
 
static anim Instance;
 
   
 
    // Конструктор
 
anim( void );
 
 
 
// Максимальное количество объектов
 
    static const int Max = 100;
 
    // 'Контейнер' объектов
 
object *Stock[Max];
 
    // Размер 'контейнера' объектов
 
int StockSize;
 
   
 
// Переменные, хранящие время в секундах
 
    long StartTime, OldTime, PauseTime;
 
   
 
// Отрисовка объектов
 
void Render( void );
 
 
// Подсчет времени
 
void Timer( void );
 
  public:
 
    // Добавление объектов в 'контейнер'
 
anim & operator<<( object *Obj )
 
    {
 
      if (StockSize < Max )
 
        Stock[StockSize++] = Obj;
 
      else
 
        delete Obj;
 
     
 
return *this;
 
    }
 
   
 
// Ширина и высота окна
 
    int WinW, WinH;
 
 
 
// Переменные, хранящие время в секундах
 
    double SyncTime, DeltaTime;
 
 
 
    // Переменная, отвечающая за паузу
 
bool IsPause;
 
 
 
    // Деструктор
 
~anim( void );
 
   
 
// Запуск главного цикла
 
void Run( void );
 
   
 
    // Метод, возвращающий переменную - единственный экземпляр данного типа
 
static anim & Get( void )
 
    {
 
      return Instance;
 
    }
 
  }; // end of 'anim' class
 
} // end of 'sagl' namespace
 
 
 
#endif /*__ANIM_H_ */
 
 
 
// END OF 'ANIM.H' FILE
 
</syntaxhighlight>
 
"'''VEC.H'''"
 
<syntaxhighlight lang="cpp" line start="1" enclose="div">
 
/* FILENAME: VEC.H
 
* LAST UPDATE: 17.01.2016
 
*/
 
 
 
#ifndef __VEC_H_
 
#define __VEC_H_
 
 
 
#include <stdlib.h>
 
#include <math.h>
 
 
 
// Собственное пространство имен 'sagl'
 
namespace sagl
 
{
 
  // Класс векторов
 
class vec
 
  {
 
  public:
 
    // Координаты вектора
 
double X, Y, Z;
 
   
 
// Конструктор
 
vec( void ) : X(0), Y(0), Z(0)
 
    {
 
    }
 
   
 
// Конструктор
 
vec( double A, double B, double C ) : X(A), Y(B), Z(C)
 
    {
 
    }
 
   
 
// Функции получения случайных чисел
 
static double R0( void )
 
    {
 
      return rand() / (double)RAND_MAX;
 
    }
 
   
 
static double R1( void )
 
    {
 
      return 2 * rand() / (double)RAND_MAX - 1;
 
    }
 
   
 
// Функции получения случайных векторов
 
static vec Rnd( void )
 
    {
 
      return vec(R0(), R0(), R0());
 
    }
 
   
 
static vec Rnd1( void )
 
    {
 
      return vec(R1(), R1(), R1());
 
    }
 
 
vec operator+( vec V )
 
{
 
return vec(X + V.X, Y + V.Y, Z + V.Z);
 
}
 
 
vec operator*( double t )
 
    {
 
      return vec(X * t, Y * t, Z * t);
 
    }
 
   
 
vec & operator+=( const vec &V )
 
    {
 
      X += V.X;
 
      Y += V.Y;
 
      Z += V.Z;
 
     
 
return *this;
 
    }
 
 
// Длина вектора
 
double operator!(void) const
 
{
 
return sqrt(X * X + Y * Y + Z * Z);
 
} /* end of 'operator!' function */
 
  }; // end of 'vec' class
 
} // end of 'sagl' namespace
 
 
 
#endif /*__VEC_H_ */
 
 
 
// END OF 'VEC.H' FILE
 
</syntaxhighlight>
 
"'''SAMPLE.H'''"
 
<syntaxhighlight lang="cpp" line start="1" enclose="div">
 
/* FILENAME: SAMPLE.H
 
* LAST UPDATE: 17.01.2016
 
*/
 
 
 
#ifndef __SAMPLE_H_
 
#define __SAMPLE_H_
 
 
 
#include <math.h>
 
 
 
#include "ANIM.H"
 
 
 
// Шар, летящий без сопротивлением воздуха
 
class ball : public sagl::object
 
{
 
private:
 
  double angle, v; // угол вектора скорости к горизонту; модуль скорости
 
public:
 
  // Конструктор
 
ball( void ) : angle(Pi / 3), v(1)
 
  {
 
P = sagl::vec(sagl::r0() + 5, 5, 0);
 
V.X = 0;
 
V.Y = sin(angle) * v;
 
V.Z = cos(angle) * v;
 
  }
 
 
// Конструктор
 
ball( double angle1, double v1 ) : angle(angle1), v(v1)
 
{
 
P = sagl::vec(sagl::r0() + 5, 5, 0);
 
V.X = 0;
 
V.Y = sin(angle) * v;
 
V.Z = cos(angle) * v;
 
}
 
 
 
// Отрисовка объекта
 
void Render( sagl::anim &Ani )
 
  {
 
// Вектор ускорения свободного падения
 
sagl::vec g = sagl::vec(0, -9.8, 0);
 
// Размер комнаты
 
double Size = 120;
 
 
 
// Изменение вектора скорости
 
V += g * Ani.DeltaTime;
 
// Изменение вектора перемещения
 
P += V * Ani.DeltaTime;
 
 
 
// Ограничения - стенки
 
if (P.X > Size / 4)
 
V.X = -fabs(V.X);
 
if (P.X < -Size / 4)
 
V.X = fabs(V.X);
 
 
 
if (P.Y > Size / 4)
 
V.Y = -fabs(V.Y);
 
if (P.Y < -Size / 4)
 
      V.Y = fabs(V.Y);
 
 
 
if (P.Z > Size / 4)
 
V.Z = -fabs(V.Z);
 
if (P.Z < -Size / 4)
 
V.Z = fabs(V.Z);
 
 
    // Запоминание состояния изменения текущей СК
 
glPushMatrix();
 
 
// Рисование стенок
 
glutWireCube(Size / 2);
 
// Задача перемещения мяча
 
glTranslated(P.X, P.Y, P.Z);
 
    // Цвет мяча
 
glColor3d(0, 1, 0);
 
// Рисование мяча
 
glutSolidSphere(0.5, 30, 30);
 
   
 
// Восстановление последнего запоминания состояния изменения текущей СК
 
glPopMatrix();
 
  }
 
}; // end of 'ball' class
 
 
 
// Шар, летящий с сопротивлением воздуха
 
// Координаты получены методом Верле при квадратичной зависимости силы сопротивлении воздуха от скорости
 
class ball_air : public sagl::object
 
{
 
private:
 
double angle, v, m, n;
 
public:
 
// Конструктор
 
ball_air( void ) : angle(Pi / 3), v(1), m(1), n(0.1)
 
{
 
P = sagl::vec(sagl::r0() + 5, 5, 0);
 
V.X = 0;
 
V.Y = sin(angle) * v;
 
V.Z = cos(angle) * v;
 
}
 
 
// Конструктор
 
ball_air( double angle1, double v1, double m1, double n1 ) : angle(angle1), v(v1), m(m1), n(n1)
 
{
 
P = sagl::vec(sagl::r0() + 5, 5, 0);
 
V.X = 0;
 
V.Y = sin(angle) * v;
 
V.Z = cos(angle) * v;
 
}
 
 
// Отрисовка объекта
 
void Render( sagl::anim &Ani )
 
{
 
// Вектор ускорения свободного падения и вектор полного ускорения
 
sagl::vec g = sagl::vec(0, -9.8, 0), a;
 
// Размер комнаты
 
double Size = 120;
 
 
 
// Изменение вектора ускорения
 
a = sagl::vec(0, g.Y - n / m * !V * V.Y, -n / m * !V * V.Z);
 
 
 
// Изменение вектора скорости
 
V += a * Ani.DeltaTime;
 
// Изменение вектора перемещения
 
P += V * Ani.DeltaTime;
 
 
 
// Ограничения - стенки
 
if (P.X > Size / 4)
 
V.X = -fabs(V.X);
 
if (P.X < -Size / 4)
 
V.X = fabs(V.X);
 
 
 
if (P.Y > Size / 4)
 
V.Y = -fabs(V.Y);
 
if (P.Y < -Size / 4)
 
V.Y = fabs(V.Y);
 
 
 
if (P.Z > Size / 4)
 
V.Z = -fabs(V.Z);
 
if (P.Z < -Size / 4)
 
V.Z = fabs(V.Z);
 
 
// Запоминание состояния изменения текущей СК
 
glPushMatrix();
 
 
// Рисование стенок
 
glutWireCube(Size / 2);
 
// Задача перемещения мяча
 
glTranslated(P.X, P.Y, P.Z);
 
// Цвет мяча
 
glColor3d(1, 0, 0);
 
// Рисование мяча
 
glutSolidSphere(0.5, 30, 30);
 
 
// Восстановление последнего запоминания состояния изменения текущей СК
 
glPopMatrix();
 
}
 
}; // end of 'ball_air' class
 
 
 
// Шар, летящий с сопротивлением воздуха
 
// Координаты получены из точного решения при линейной зависимости силы сопротивлении воздуха от скорости
 
class ball_air_2 : public sagl::object
 
{
 
private:
 
double angle, v, m, n;
 
public:
 
// Конструктор
 
ball_air_2( void ) : angle(Pi / 3), v(1), m(1), n(0.1)
 
{
 
P = sagl::vec(sagl::r0() + 5, 5, 0);
 
V.X = 0;
 
V.Y = sin(angle) * v;
 
V.Z = cos(angle) * v;
 
}
 
 
// Конструктор
 
ball_air_2( double angle1, double v1, double m1, double n1 ) : angle(angle1), v(v1), m(m1), n(n1)
 
{
 
P = sagl::vec(sagl::r0() + 5, 5, 0);
 
V.X = 0;
 
V.Y = sin(angle) * v;
 
V.Z = cos(angle) * v;
 
}
 
 
// Отрисовка объекта
 
void Render( sagl::anim &Ani )
 
{
 
// Вектор ускорения свободного падения и вектор полного ускорения
 
sagl::vec g = sagl::vec(0, -9.8, 0), a;
 
// Размер комнаты
 
double Size = 120;
 
 
 
// Изменение вектора скорости
 
V.Z = V.Z * exp(-n / m * Ani.DeltaTime);
 
V.Y = (V.Y - g.Y * m / n) * exp(-n / m * Ani.DeltaTime) + g.Y * m / n;
 
// Изменение вектора перемещения
 
P += V * Ani.DeltaTime;
 
 
 
// Ограничения - стенки
 
if (P.X > Size / 4)
 
V.X = -fabs(V.X);
 
if (P.X < -Size / 4)
 
V.X = fabs(V.X);
 
 
 
if (P.Y > Size / 4)
 
V.Y = -fabs(V.Y);
 
if (P.Y < -Size / 4)
 
V.Y = fabs(V.Y);
 
 
 
if (P.Z > Size / 4)
 
V.Z = -fabs(V.Z);
 
if (P.Z < -Size / 4)
 
V.Z = fabs(V.Z);
 
 
 
// Запоминание состояния изменения текущей СК
 
glPushMatrix();
 
 
 
// Рисование стенок
 
glutWireCube(Size / 2);
 
// Задача перемещения мяча
 
glTranslated(P.X, P.Y, P.Z);
 
// Цвет мяча
 
glColor3d(0, 1, 1);
 
// Рисование мяча
 
glutSolidSphere(0.5, 30, 30);
 
 
// Восстановление последнего запоминания состояния изменения текущей СК
 
glPopMatrix();
 
}
 
}; // end of 'ball_air_2' class
 
 
 
// Шар, летящий с сопротивлением воздуха
 
// Координаты получены методом Верле при линейной зависимости силы сопротивлении воздуха от скорости
 
class ball_air_3 : public sagl::object
 
{
 
private:
 
double angle, v, m, n;
 
public:
 
// Конструктор
 
ball_air_3( void ) : angle(Pi / 3), v(1), m(1), n(0.1)
 
{
 
P = sagl::vec(sagl::r0() + 5, 5, 0);
 
V.X = 0;
 
V.Y = sin(angle) * v;
 
V.Z = cos(angle) * v;
 
}
 
 
// Конструктор
 
ball_air_3( double angle1, double v1, double m1, double n1 ) : angle(angle1), v(v1), m(m1), n(n1)
 
{
 
P = sagl::vec(sagl::r0() + 5, 5, 0);
 
V.X = 0;
 
V.Y = sin(angle) * v;
 
V.Z = cos(angle) * v;
 
}
 
 
// Отрисовка объекта
 
void Render( sagl::anim &Ani )
 
{
 
// Вектор ускорения свободного падения и вектор полного ускорения
 
sagl::vec g = sagl::vec(0, -9.8, 0), a;
 
// Размер комнаты
 
double Size = 120;
 
 
 
// Изменение вектора ускорения
 
a = sagl::vec(0, g.Y - n / m * V.Y, -n / m * V.Z);
 
 
 
// Изменение вектора скорости
 
V += a * Ani.DeltaTime;
 
// Изменение вектора перемещения
 
P += V * Ani.DeltaTime;
 
 
 
// Ограничения - стенки
 
if (P.X > Size / 4)
 
V.X = -fabs(V.X);
 
if (P.X < -Size / 4)
 
V.X = fabs(V.X);
 
 
 
if (P.Y > Size / 4)
 
V.Y = -fabs(V.Y);
 
if (P.Y < -Size / 4)
 
V.Y = fabs(V.Y);
 
 
 
if (P.Z > Size / 4)
 
V.Z = -fabs(V.Z);
 
if (P.Z < -Size / 4)
 
V.Z = fabs(V.Z);
 
 
 
// Запоминание состояния изменения текущей СК
 
glPushMatrix();
 
 
 
// Рисование стенок
 
glutWireCube(Size / 2);
 
// Задача перемещения мяча
 
glTranslated(P.X, P.Y, P.Z);
 
// Цвет мяча
 
glColor3d(1, 0.5, 0);
 
// Рисование мяча
 
glutSolidSphere(0.5, 30, 30);
 
 
// Восстановление последнего запоминания состояния изменения текущей СК
 
glPopMatrix();
 
}
 
}; // end of 'ball_air_3' class
 
 
 
#endif /*__SAMPLE_H_ */
 
 
 
// END OF 'SAMPLE.H' FILE
 
</syntaxhighlight>
 
</div>
 
[http://tm.spbstu.ru/File:T06BALL.7z Скачать архив]
 
<br>
 
 
 
'''[[Рубинова Раиса]]'''
 
 
 
'''Описание программы''': программа состоит из четырех независимых друг от друга частей:
 
#  Полет тела без сопротивления воздуха;
 
#  Полет тела при линейной зависимости силы сопротивления воздуха от скорости, при котором координаты тела рассчитываются точным методом;
 
#  Полет тела при линейной зависимости силы сопротивления воздуха от скорости, при котором координаты тела рассчитываются методом Верле;
 
#  Полет тела при квадратичной зависимости силы сопротивлении воздуха от скорости, при котором координаты тела рассчитываются методом Верле;
 
 
 
Скачать можно [http://tm.spbstu.ru/File:Полет.rar тут].
 
 
 
<div class="mw-collapsible-content">
 
 
 
[[File:Обычный.png]]
 
[[File:Точный.png]]
 
[[File:Верле2.png]]
 
[[File:Верле1.png]]
 
 
 
<syntaxhighlight lang="cpp" line start="1" enclose="div">
 
// Первый случай
 
 
 
#include <iostream>
 
#include <math.h>
 
#include <cstdlib>
 
#include <fstream>
 
 
 
/// Программа, анализирующая полет тела;
 
 
 
using namespace std;
 
double a,s,H,p1,p2,X,f;    /// Создание переменных, необходимых для работы:
 
                                                                                /// a - угол к горизонту, под которым летит тело, вводится пользователем;
 
                                                                                /// s - начальная скорость, с которой тело начинает лететь, вводится пользователем;
 
                                                                                /// H - координата тела по оси Oy;
 
                                                                                /// p1, p2 - промежуточные переменные, предназначенные для расчетов;
 
                                                                                /// X - координата тела по оси Oy;
 
                                                                                /// f - шаг по времени;
 
 
 
int main()
 
{
 
    cout << "Enter speed and angle and step of time" << endl;  /// Обращение к пользователю, где требуется ввести скорость тела, угол к горизонту и шаг по времени;
 
    cin >> s >> a >> f;    /// Считывание данных, введенных пользователем, в переменные;
 
    double t=s*sin(a*3.14159/180.0)/9.8;        /// Создание новой переменной t, хранящей значение времени полета тела вверх (вычисленное через уравнение скорости по оси Oy);
 
    for (double i=f; i<(2*t+f); i+=f)      /// Для вычисления координат тела в n-ом количестве точек мы создаем цикл, который повторяется то количество раз, сколько раз шаг по времени, введенным пользователем, вмещается во время полета всего тела;
 
    {
 
        p1=s*sin(a*3.14159/180)*i;      /// Вычисление первой компоненты координаты тела по оси Oy, представляемй как произведение скорости по этой оси на время (выражено из уравнения равноускоренного прямолинейного движения);
 
        p2=4.9*i*i;        /// Вычисление второй компоненты координаты тела по оси Oy, представляемой как произведение квадрата времени на половину укорения свободного падения (выражено из уравнения РУПД);
 
        H=double(p1)-p2;    /// Вычисление координаты тела по оси Oy;
 
        X=s*cos(a*3.14159/180)*i;      /// Вычисление координаты тела по оси Ox как произведение скорости по оси Ox на время (выражено из уравнения равномерного движения);
 
        cerr << X << " ";      /// Вывод на экран значения по оси Ox
 
        cerr << H << endl;      /// и по оси Oy;
 
    }
 
    ofstream out("zap.txt");        /// Так как результаты анализа не только выводятся на экран, но и записываются в файл, мы создаем переменную, соответствующую файлу "Res.txt", находящемуся в папке с программой, и открываем файл для записи;
 
    for (double i=0; i<(2*t+f); i+=f)        /// Для вычисления координат тела в n-ом количестве точек мы создаем цикл, который повторяется то количество раз, сколько раз шаг по времени, введенным пользователем, вмещается во время полета всего тела;
 
    {
 
        p1=s*sin(a*3.14159/180)*i;      /// Вычисление первой компоненты координаты тела по оси Oy, представляемй как произведение скорости по этой оси на время (выражено из уравнения равноускоренного прямолинейного движения);
 
        p2=4.9*i*i;            /// Вычисление второй компоненты координаты тела по оси Oy, представляемой как произведение квадрата времени на половину укорения свободного падения (выражено из уравнения РУПД);
 
        H=double(p1)-p2;        /// Вычисление координаты тела по оси Oy;
 
        X=s*cos(a*3.14159/180)*i;      /// Вычисление координаты тела по оси Ox как произведение скорости по оси Ox на время (выражено из уравнения равномерного движения);
 
        out << X << " ";        /// Запись в файл значения по оси Ox
 
        out << H << endl;      /// и по оси Oy;
 
    }
 
    out.close();        /// Закрываем файл, с которым работали в течение программы;
 
    return 0;          /// По умолчанию возвращаем функции int main значение 0, тем самым завершая программу;
 
}
 
 
 
// Второй случай
 
 
 
#include <iostream>
 
#include <math.h>
 
#include <cstdlib>
 
#include <fstream>
 
 
 
/// Программа, позволяющая описать полет точки при помощи точного метода;
 
 
 
using namespace std;
 
double v,a,st,m;    /// Создание переменных, необходимых для работы:
 
                        /// v - модуль скорости, который задает сам пользователь;
 
                        /// a - угол относительно горизонта, под которым летит тело, задается пользователем;
 
                        /// st - шаг по времени, через который расчитываются координаты точек, задается пользователем;
 
                        /// m - масса тела, задается пользователем;
 
double *V,*X, *Y, *U;  /// Создание массивов, хранящих значения типа double, в которых хранятся значения:
 
                        /// V - массив, хранящий значения скорости по оси Ox;
 
                        /// X - массив, хранящий координаты точки по оси Ox;
 
                        /// Y - массив, хранящий значения скорости по оси Oy;
 
                        /// U - массив, хранящий координаты точки по оси Oy;
 
 
 
int main()
 
{
 
    cout << "Enter speed and angle and step of time and weight" << endl;        /// Обращение к пользователю, где требуется ввести скорость тела, угол к горизонту, шаг по времени и массу тела;
 
    cin >> v >> a >> st >> m;          /// Считывание данных, введенных пользователей в переменные;
 
    double t=(v/9.8)*sin(3.14159*a/180.0);          /// Создание новой переменной t, хранящей значение времени всего полета тела, вычисленного, как два времени взлета (через уравнение скорости по оси Oy);
 
    int n=2*t/st;      /// Создание новой целочисленной переменной, которая равна времени полета тела (преобразование типов для переменной t) деленного на шаг, которая будет использоваться при создании массивов для размера;
 
    //int p=1/st;
 
    V = new double [n+2];      /// Создание динамического массива V, предназначенного для хранения значений скорости по оси Ox, размером (n+2) (n показывает, сколько раз шаг по времени помещается во все время, то есть, сколько точек мы будем рассматривать, анализируя полет точки);
 
    X = new double [n+2];      /// Создание динамического массива X, предназначенного для хранения координаты тела по оси Ox и имеющего схожие характеристики с массивом V;
 
    Y = new double [n+2];      /// Создание динамического массива X, предназначенного для хранения координаты тела по оси Oy и имеющего схожие характеристики с массивом V;
 
    U = new double [n+2];      /// Создание динамического массива U, предназначенного для хранения значений скорости тела по оси Oy и имеющего схожие характеристики с массивом V;
 
    V[0]=v*cos(3.14159*a/180.0);        /// Вычисление значения скорости по оси Ox в начальный момент времени, как состовляющая модуля скорости, заданного пользователем;
 
    X[0]=0;        /// Задание координаты точки по оси Ox в начальный момент времени. Мы рассматриваем движение тела под углом к горизонту из начала координат, поэтому x=0;
 
    U[0]=v*sin(3.14159*a/180.0);        /// Вычисление значения скорости по оси Oy в начальный момент времени, как компонента модуля скорости, заданного пользователем, по вертикальной оси;
 
    Y[0]=0;        /// Задание координаты точки по оси Oy в начальный момент времени. Мы рассматриваем движение тела под углом к горизонту из начала координат, поэтому y=0;
 
    ofstream out("Res.txt");        /// Так как результаты анализа не только выводятся на экран, но и записываются в файл, мы создаем переменную, соответствующую файлу "Res.txt", находящемуся в папке с программой, и открываем файл для записи;
 
    for (int i=1; i<n; ++i)        /// Для вычисления координат тела в пространстве в зависимости от времени мы создаем цикл, который позволяет, использая общую формулу нахождкения координат и компонент скорости, вычислять эти значения
 
                                    /// Цикл повторяется (n-1) раз, так как значения в начальный момент времени были найдены отдельно от цикла, и повторяется столько раз, сколько точек траектории мы рассматриваем;
 
    {
 
        Y[i]=(m/0.001)*(U[0]+9.8*(m/0.001))*(1-exp(((0-0.001)/m)*i*st))-9.8*(m/0.001)*i*st;        /// Вычисление координаты тела в момент времени (i*st) по оси Oy по формуле, выведенной через дифференциальное уравнение точки для вертикальной оси и находящей координату как функцию от времени и координаты тела в предыдущей рассматриваемой нами точке;
 
        X[i]=V[0]*(m/0.001)*(1-exp(((0-0.001)/m)*i*st));          /// Аналогично вычисляем координаты тела в момент времени (i*st) по оси Ox как функцию от времени и координате в предыдущей рассматриваемой точке;
 
                                                                  /// В приведенных выше формулах зачение 0.001 - это коэффициент сопротивления воздуха;
 
                                                                  /// Движение по горизонтальной оси рассматривается как равномерное прямолинейное движение;
 
                                                                  /// Движение по вертикальной оси рассматривается как равноускоренное прямолинейное движение;
 
        cerr << X[i] << " " << Y[i] << endl;        /// Выведение рассчитанных значений на экран в виде строки, где первым идет координата по оси Ox, вторым - по оси Oy;
 
        out << X[i] << " " << Y[i] << endl;        /// Запись рассчитанных значений в файл "Res.txt" в виде строки, где первым идет координата по оси Ox, вторым - по оси Oy;
 
                                                    /// Таким образом, в результате работы программы мы получаем два столбика значений для координат по обеим осям, которые как записаны в файл, так и выведены на экран;
 
    }
 
    out.close();        /// Закрываем файл, с которым работали в течение программы;
 
    return 0;          /// По умолчанию возвращаем функции int main значение 0, тем самым завершая программу;
 
 
 
 
 
}
 
 
 
// Третий случай
 
 
 
#include <iostream>
 
#include <math.h>
 
#include <cstdlib>
 
#include <fstream>
 
 
 
/// Программа, анализирующая полет тела при помощи модифицированного метода Верле;
 
 
 
using namespace std;
 
double v,a,st,m,x,y;    /// Создание переменных, необходимых для работы;
 
                        /// v - модуль скорости, который задает сам пользователь;
 
                        /// a - угол относительно горизонта, под которым летит тело, задается пользователем;
 
                        /// st - шаг по времени, через который расчитываются координаты точек, задается пользователем;
 
                        /// m - масса тела, задается пользователем;
 
                        /// x - координата тела по оси Ox в мнимый момент времени t=-1;
 
                        /// y - координата тела по оси Oy в мнимый момент времени t=-1;
 
double *V,*X, *Y, *U;  /// Создание массивов, хранящих значения типа double, в которых хранятся значения:
 
                        /// V - массив, хранящий значения скорости по оси Ox;
 
                        /// X - массив, хранящий координаты точки по оси Ox;
 
                        /// Y - массив, хранящий значения скорости по оси Oy;
 
                        /// U - массив, хранящий координаты точки по оси Oy;
 
 
 
int main()
 
{
 
    cout << "Enter speed and angle and step of time and weight" << endl;    /// Обращение к пользователю, где требуется ввести скорость тела, угол к горизонту, шаг по времени и массу тела;
 
    cin >> v >> a >> st >> m;      /// Считывание данных, введенных пользователей в переменные;
 
    double t=(v/9.8)*sin(3.14159*a/180.0);      /// Создание новой переменной t, хранящей значение времени всего полета тела, вычисленного, как два времени взлета (через уравнение скорости по оси Oy);
 
    int n=2*t/st;  /// Создание новой целочисленной переменной, которая равна времени полета тела (преобразование типов для переменной t) деленного на шаг, которая будет использоваться при создании массивов для размера;
 
    //int p=1/st;
 
    V = new double [n+2];      /// Создание динамического массива V, предназначенного для хранения значений скорости по оси Ox, размером (n+2) (n показывает, сколько раз шаг по времени помещается во все время, то есть, сколько точек мы будем рассматривать, анализируя полет точки);
 
    X = new double [n+2];      /// Создание динамического массива X, предназначенного для хранения координаты тела по оси Ox и имеющего схожие характеристики с массивом V;
 
    Y = new double [n+2];      /// Создание динамического массива X, предназначенного для хранения координаты тела по оси Oy и имеющего схожие характеристики с массивом V;
 
    U = new double [n+2];      /// Создание динамического массива U, предназначенного для хранения значений скорости тела по оси Oy и имеющего схожие характеристики с массивом V;
 
    V[0]=v*cos(3.14159*a/180.0);    /// Вычисление значения скорости по оси Ox в начальный момент времени, как состовляющая модуля скорости, заданного пользователем;
 
    X[0]=0;    /// Задание координаты точки по оси Ox в начальный момент времени. Мы рассматриваем движение тела под углом к горизонту из начала координат, поэтому x=0;
 
    x=X[0]-V[0]*st;    /// Суть данного метода заключается в том, что мы находим значение параметров тела по предыдущим двум состояниям, поэтому нам нужно вычислить мнимые координаты тела в -1 момент времени. Это расчет коордлинаты по оси Ox;
 
    X[1]=2*X[0]-x-(0.01/m)*V[0]*st*st;  /// Вычисление координаты тела по оси Ox в момент времени t=1;
 
    U[0]=v*sin(3.14159*a/180.0);    /// Вычисление значения скорости по оси Oy в начальный момент времени, как компонента модуля скорости, заданного пользователем, по вертикальной оси;
 
    Y[0]=0;    /// Задание координаты точки по оси Oy в начальный момент времени. Мы рассматриваем движение тела под углом к горизонту из начала координат, поэтому y=0;
 
    y=Y[0]-U[0]*st;    /// Суть данного метода заключается в том, что мы находим значение параметров тела по предыдущим двум состояниям, поэтому нам нужно вычислить мнимые координаты тела в -1 момент времени. Это расчет коордлинаты по оси Oу;
 
    Y[1]=2*Y[0]-y-(0.01/m)*U[0]*st*st;      /// Вычисление координаты тела по оси Oу в момент времени t=1;
 
    cerr << X[1] << " " << Y[1] << endl;    /// Вывод на экран значений координат по обеим осям в момент времени t=1;
 
    ofstream out("Res.txt");        /// Так как результаты анализа не только выводятся на экран, но и записываются в файл, мы создаем переменную, соответствующую файлу "Res.txt", находящемуся в папке с программой, и открываем файл для записи;
 
    out << X[1] << " " << Y[1] << endl;    /// Записываем в файл полученные значения координат тела в момент времени t=1;
 
    int k=1;        /// Создаем целочисленную переменную k=1 для работы в цикле;
 
    //cerr<<"N "<<n<<"\n";
 
    for (int i=0; i<n; ++i)    /// Для вычисления координат тела в пространстве в зависимости от времени мы создаем цикл, который позволяет, использая общую формулу нахождкения координат и компонент скорости, вычислять эти значения
 
                                /// Цикл повторяется (n-1) раз, так как значения в начальный момент времени были найдены отдельно от цикла, и повторяется столько раз, сколько точек траектории мы рассматриваем;
 
    {
 
        X[k+1]=2.0*X[k]-X[k-1]-(0.001/m)*V[k]*st*st;    /// Нахождение координаты тела по оси Ox в момент времени t, основываясь на известных параметрах за моменты времени t-1 и t-2;
 
        V[k]=(X[k+1]-X[k-1])/(2*st);        /// Нахождение значения скорости тела по оси Ox в момент времени t-1, основываясь на рассчитанных выше координатах тела по оси Ox длямоментов времени t и t-2;
 
        Y[k+1]=2.0*Y[k]-Y[k-1]-(9.8+(0.001/m)*U[k])*st*st;      /// Нахождение координаты тела по оси Oy в момент времени t, основываясь на известных параметрах за моменты времени t-1 и t-2;
 
        U[k]=(Y[k+1]-Y[k-1])/(2*st);        /// Нахождение значения скорости тела по оси Oy в момент времени t-1, основываясь на рассчитанных выше координатах тела по оси Ox длямоментов времени t и t-2;
 
        //cerr <<i<<" "<<k<<" "<<
 
        cerr << X[k+1] << " " << Y[k+1] << endl;    /// Выведение рассчитанных значений на экран в виде строки, где первым идет координата по оси Ox, вторым - по оси Oy;
 
        out << X[k+1] << " " << Y[k+1] << endl;    /// Запись рассчитанных значений в файл "Res.txt" в виде строки, где первым идет координата по оси Ox, вторым - по оси Oy;
 
        k=k+1;      /// Увеличиваем число k на единицу, чтобы в следующем шаге цикла рассчитать значения для следующего момента времени;
 
                    /// Таким образом, в результате работы программы мы получаем два столбика значений для координат по обеим осям, которые как записаны в файл, так и выведены на экран;
 
    }
 
    out.close();    /// Закрываем файл, с которым работали в течение программы;
 
    return 0;      /// По умолчанию возвращаем функции int main значение 0, тем самым завершая программу;
 
}
 
 
 
// Четвертый случай
 
 
 
#include <iostream>
 
#include <math.h>
 
#include <cstdlib>
 
#include <fstream>
 
 
 
/// Программа, анализирующая полет тела при помощи метода Верле;
 
 
 
using namespace std;
 
double v,a,st,m,x,y;        /// Создание переменных, необходимых для работы:
 
                            /// v - модуль скорости, который задает сам пользователь;
 
                            /// a - угол относительно горизонта, под которым летит тело, задается пользователем;
 
                            /// st - шаг по времени, через который расчитываются координаты точек, задается пользователем;
 
                            /// m - масса тела, задается пользователем;
 
                            /// x - координата тела по оси Ox в мнимый момент времени t=-1;
 
                            /// y - координата тела по оси Oy в мнимый момент времени t=-1;
 
double *V,*X, *Y, *U;      /// Создание массивов, хранящих значения типа double, в которых хранятся значения:
 
                            /// V - массив, хранящий значения скорости по оси Ox;
 
                            /// X - массив, хранящий координаты точки по оси Ox;
 
                            /// Y - массив, хранящий значения скорости по оси Oy;
 
                            /// U - массив, хранящий координаты точки по оси Oy;
 
 
 
int main()
 
{
 
    cout << "Enter speed and angle and step of time and weight" << endl;        /// Обращение к пользователю, где требуется ввести скорость тела, угол к горизонту, шаг по времени и массу тела;
 
    cin >> v >> a >> st >> m;      /// Считывание данных, введенных пользователем, в переменные;
 
    double t=(v/9.8)*sin(3.14159*a/180.0);      /// Создание новой переменной t, хранящей значение времени всего полета тела, вычисленного, как два времени взлета (через уравнение скорости по оси Oy);
 
    int n=2*t/st;          /// Создание новой целочисленной переменной, которая равна времени полета тела (преобразование типов для переменной t) деленного на шаг, которая будет использоваться при создании массивов для размера;
 
    //int p=1/st;
 
    V = new double [n+2];  /// Создание динамического массива V, предназначенного для хранения значений скорости по оси Ox, размером (n+2) (n показывает, сколько раз шаг по времени помещается во все время, то есть, сколько точек мы будем рассматривать, анализируя полет точки);
 
    X = new double [n+2];  /// Создание динамического массива X, предназначенного для хранения координаты тела по оси Ox и имеющего схожие характеристики с массивом V;
 
    Y = new double [n+2];  /// Создание динамического массива X, предназначенного для хранения координаты тела по оси Oy и имеющего схожие характеристики с массивом V;
 
    U = new double [n+2];  /// Создание динамического массива U, предназначенного для хранения значений скорости тела по оси Oy и имеющего схожие характеристики с массивом V;
 
    V[0]=v*cos(3.14159*a/180.0);        /// Вычисление значения скорости по оси Ox в начальный момент времени, как состовляющая модуля скорости, заданного пользователем;
 
    X[0]=0;                /// Задание координаты точки по оси Ox в начальный момент времени. Мы рассматриваем движение тела под углом к горизонту из начала координат, поэтому x=0;
 
    x=X[0]-V[0]*st;        /// Суть данного метода заключается в том, что мы находим значение параметров тела по предыдущим двум состояниям, поэтому нам нужно вычислить мнимые координаты тела в -1 момент времени. Это расчет коордлинаты по оси Ox;
 
    X[1]=2*X[0]-x-(0.01/m)*V[0]*V[0]/cos(3.14159*a/180.0)*st*st;    /// Вычисление координаты тела по оси Ox в момент времени t=1;
 
    U[0]=v*sin(3.14159*a/180.0);    /// Вычисление значения скорости по оси Oy в начальный момент времени, как компонента модуля скорости, заданного пользователем, по вертикальной оси;
 
    Y[0]=0;                /// Задание координаты точки по оси Oy в начальный момент времени. Мы рассматриваем движение тела под углом к горизонту из начала координат, поэтому y=0;
 
    y=Y[0]-U[0]*st;        /// Суть данного метода заключается в том, что мы находим значение параметров тела по предыдущим двум состояниям, поэтому нам нужно вычислить мнимые координаты тела в -1 момент времени. Это расчет коордлинаты по оси Oу;
 
    Y[1]=2*Y[0]-y-(0.01/m)*U[0]*U[0]/sin(3.14159*a/180.0)*st*st;    /// Вычисление координаты тела по оси Oу в момент времени t=1;
 
    cerr << X[1] << " " << Y[1] << endl;    /// Вывод на экран значений координат по обеим осям в момент времени t=1;
 
    ofstream out("Res.txt");        /// Так как результаты анализа не только выводятся на экран, но и записываются в файл, мы создаем переменную, соответствующую файлу "Res.txt", находящемуся в папке с программой, и открываем файл для записи;
 
    out << X[1] << " " << Y[1] << endl;        /// Записываем в файл полученные значения координат тела в момент времени t=1;
 
    int k=1;            /// Создаем целочисленную переменную k=1 для работы в цикле;
 
    //cerr<<"N "<<n<<"\n";
 
    for (int i=0; i<n; ++i)        /// Для вычисления координат тела в пространстве в зависимости от времени мы создаем цикл, который позволяет, использая общую формулу нахождкения координат и компонент скорости, вычислять эти значения
 
                                    /// Цикл повторяется (n-1) раз, так как значения в начальный момент времени были найдены отдельно от цикла, и повторяется столько раз, сколько точек траектории мы рассматриваем;
 
    {
 
        X[k+1]=2.0*X[k]-X[k-1]-(0.001/m)*V[k]*V[k]*st*st;      /// Нахождение координаты тела по оси Ox в момент времени t, основываясь на известных параметрах за моменты времени t-1 и t-2;
 
        V[k]=(X[k+1]-X[k-1])/(2*st);        /// Нахождение значения скорости тела по оси Ox в момент времени t-1, основываясь на рассчитанных выше координатах тела по оси Ox длямоментов времени t и t-2;
 
        Y[k+1]=2.0*Y[k]-Y[k-1]-(9.8+(0.001/m)*U[k]*U[k])*st*st;    /// Нахождение координаты тела по оси Oy в момент времени t, основываясь на известных параметрах за моменты времени t-1 и t-2;
 
        U[k]=(Y[k+1]-Y[k-1])/(2*st);    /// Нахождение значения скорости тела по оси Oy в момент времени t-1, основываясь на рассчитанных выше координатах тела по оси Ox длямоментов времени t и t-2;
 
        //cerr <<i<<" "<<k<<" "<<
 
        cerr << X[k+1] << " " << Y[k+1] << endl;    /// Выведение рассчитанных значений на экран в виде строки, где первым идет координата по оси Ox, вторым - по оси Oy;
 
        out << X[k+1] << " " << Y[k+1] << endl;    /// Запись рассчитанных значений в файл "Res.txt" в виде строки, где первым идет координата по оси Ox, вторым - по оси Oy;
 
        k=k+1;      /// Увеличиваем число k на единицу, чтобы в следующем шаге цикла рассчитать значения для следующего момента времени;
 
                                                    /// Таким образом, в результате работы программы мы получаем два столбика значений для координат по обеим осям, которые как записаны в файл, так и выведены на экран;
 
    }
 
    out.close();    /// Закрываем файл, с которым работали в течение программы;
 
    return 0;      /// По умолчанию возвращаем функции int main значение 0, тем самым завершая программу;
 
}
 
 
 
</syntaxhighlight>
 
</div>
 
 
 
<div class="mw-collapsible mw-collapsed" style="width:100%" >
 
'''[[Савельева Ольга]]'''
 
 
 
'''Описание:''' Пользователя попросят ввести начальную скорость, угол бросания, тогда программа запишет в файл результаты следующих вычислений:
 
# Координаты, рассчитанные по формуле, при движении без сопротивления воздуха;
 
# Координаты, полученные методом Верле при линейной зависимости силы сопротивлении воздуха от скорости;
 
# Координаты, полученные методом Верле при квадратичной зависимости силы сопротивлении воздуха от скорости.
 
# Координаты, полученные из точного решения, при линейной зависимости силы сопротивлении воздуха от скорости;
 
 
 
<div class="mw-collapsible-content">
 
 
 
<syntaxhighlight lang="cpp" line start="1" enclose="div">
 
#include <stdio.h>
 
#include <stdlib.h>
 
#include <cmath>
 
 
 
using namespace std;
 
 
 
FILE *output;
 
 
 
double e = 0.0000001; //точность
 
double g = 9.8; //ускорение свободного падения
 
double dt = 0.00001;  //шаг по времени
 
double windageLinearCoefficient = 0.1;
 
double windageSquareCoefficient = 0.00001;
 
 
 
struct Vector  //вектор
 
{
 
    double x, y;
 
    Vector():x(0), y(0)
 
    {}
 
    Vector(double x, double y):x(x), y(y)
 
    {}
 
    const Vector operator+(const Vector &v) const
 
    {
 
        return Vector(this -> x + v.x, this -> y + v.y);
 
    }
 
    const Vector operator-(const Vector &v) const
 
    {
 
        return Vector(this -> x - v.x, this -> y - v.y);
 
    }
 
    const Vector operator*(const double k) const
 
    {
 
        return Vector(this -> x * k, this -> y * k);
 
    }
 
    const Vector operator*(const int k) const
 
    {
 
        return Vector(this -> x * k, this -> y * k);
 
    }
 
    const Vector operator/(const double k) const
 
    {
 
        return Vector(this -> x / k, this -> y / k);
 
    }
 
};
 
 
 
const Vector operator*(const double a, const Vector &v)
 
{
 
    return Vector(v.x * a, v.y * a);
 
}
 
 
 
const Vector operator*(const int k, const Vector &v)
 
{
 
    return Vector(v.x * k, v.y * k);
 
}
 
 
 
double abs(const Vector &v)
 
{
 
    return sqrt(v.x * v.x + v.y * v.y);
 
}
 
 
 
void printCoordinate(const char *description, const Vector &v)  //выводит координаты в более читаемом виде
 
{
 
    fputs(description, output);
 
    fputs(": ", output);
 
    fprintf(output, "%lf", v.x);
 
    fputs(", ", output);
 
    fprintf(output, "%lf\n", v.y);
 
}
 
 
 
Vector getCoordinatesWithoutWindage(double velocity, double angle, double time = -1)
 
{
 
    double fallTime = 2 * velocity * sin(angle) / g;  //расчет времени падения
 
    if((time < 0) or (time > fallTime))
 
        time = fallTime;
 
    double x = velocity * cos(angle) * time;    // x = vx*t;
 
    double y = velocity * sin(angle) * time - g * time * time / 2;  // y = vy*t-(g*t^2)/2;
 
    return Vector(x, y);
 
}
 
 
 
Vector getCoordinatesVerletLinear(double velocity, double angle, double time = -1)
 
{
 
    double nowTime = dt;
 
    Vector rsb(0, 0);
 
    if((time >= 0) and (dt / 2 - time > 0)) //если время расчета дается слишком малого промежутка
 
        return rsb; //вернитесь в начальную точку
 
    Vector v(velocity * cos(angle), velocity * sin(angle)); //проекции начальной скорости
 
    Vector r = v * dt;    //вторая точка
 
    Vector a = -windageLinearCoefficient * v; //ускорение в начальной точке
 
    a.y -= g;
 
    v = v + a * dt; //скорость во второй точке
 
    a = -windageLinearCoefficient * v; //ускорение во второй точке
 
    a.y -= g;
 
    while((r.y > 0) or ((time > 0) and (nowTime <= time)))  //пока точка выше 0 или не достигла заданного времени
 
    {
 
        Vector rn = 2 * r - rsb + a * dt * dt;  // r(t+dt) = 2*r(t)-r(t-dt)+a(t)*dt^2;
 
        v = (rn - rsb) / (2 * dt);  // v(t) = (r(t+dt)-r(t-dt))/(2*dt);
 
        rsb = r;    //обновление r(t-dt) and r(t)
 
        r = rn;
 
        a = -windageLinearCoefficient * v;  //обновление a(t)
 
        a.y -= g;
 
        nowTime += dt;  //обновленное время
 
    }
 
    return r;
 
}
 
 
 
Vector calculateForTime(Vector &v, double time)
 
{
 
    Vector r;
 
    // x = vx/k*(1-e^(-k*t));
 
    r.x = v.x / windageLinearCoefficient * (1 - exp(-windageLinearCoefficient * time));
 
    // y = ((vy+g/k)*(1-e^(-k*t))-g*t)/k;
 
    r.y = ((v.y + g / windageLinearCoefficient) * (1 - exp(-windageLinearCoefficient * time)) - g * time) / windageLinearCoefficient;
 
    return r;
 
}
 
 
 
Vector getCoordinatesAccurateLinear(double velocity, double angle, double time = -1)
 
{
 
    if(windageLinearCoefficient < e) //если коэффициент слишком близок к нулю
 
        return getCoordinatesWithoutWindage(velocity, angle, time);  //вычисляй будто это 0
 
    Vector r;
 
    Vector v(velocity * cos(angle), velocity * sin(angle)); //проекции начальной скорости
 
    if(time >= 0)  //время данное
 
    {
 
        r = calculateForTime(v, time);
 
        if(r.y >= 0)    //если объект в воздухе или только приземлился
 
            return r;  //затем верните координаты объекта
 
        else    //еще
 
            return getCoordinatesAccurateLinear(velocity, angle);  //верните координаты приземления
 
    }
 
    else
 
    {
 
        double timer, timel, timem;
 
        timer = v.y / g;
 
        timel = 0;
 
        while(calculateForTime(v, timer).y > 0) //смотрим на некоторые значения времени, которые больше времени посадки
 
            timer *= 1.5;
 
        timem = timel + (timer - timel) / 2;
 
        r = calculateForTime(v, timem);
 
        while(abs(r.y) > e)    //бинарный поиск времени посадки
 
        {
 
            if(r.y > 0)
 
                timel = timem;
 
            else
 
                timer = timem;
 
            timem = timel + (timer - timel) / 2;
 
            r = calculateForTime(v, timem);
 
        }
 
        return r;
 
    }
 
}
 
 
 
Vector getCoordinatesVerletSquare(double velocity, double angle, double time = -1)
 
{
 
    double nowTime = dt;
 
    Vector rsb(0, 0);
 
    if((dt / 2 - time > 0)and(time >= 0))  //если время слишком малое для рсчета
 
        return rsb; //вернитесь в начальную точку
 
    Vector v(velocity * cos(angle), velocity * sin(angle)); //проекции начальной скорости
 
    Vector r = v * dt;  //вторая точка
 
    Vector a = -abs(v) * v * windageSquareCoefficient;  //ускорение в начальной точке
 
    a.y -= g;
 
    v = v + a * dt; //скорость во второй точке
 
    a = -abs(v) * v * windageSquareCoefficient; //ускорение во второй точке
 
    a.y -= g;
 
    while((r.y > 0) or ((time > 0) and (nowTime <= time)))  //когда точка выше нулевой отметки и не достигает заданного времени
 
    {
 
        Vector rn = 2 * r - rsb + a * dt * dt;  // r(t+dt) = 2*r(t)-r(t-dt)+a(t)*dt^2;
 
        v = (rn - rsb) / (2 * dt);  // v(t) = (r(t+dt)-r(t-dt))/(2*dt);
 
        rsb = r;    //updating r(t-dt) and r(t)
 
        r = rn;
 
        a = -abs(v) * v * windageSquareCoefficient; //новое a(t)
 
        a.y -= g;
 
        nowTime += dt;  //новое a(t)
 
    }
 
    return r;
 
}
 
 
 
void err(const char *s) //печатает сообщение об ошибке и завершает работу
 
{
 
    fputs(s, output);
 
    exit(1);
 
}
 
 
 
int main(int argc, const char *argv[])
 
{
 
    double velocity, angle;
 
    bool needRead = true;
 
    if(argc==3) //если даны 2 аргумента
 
    {
 
        velocity = atof(argv[1]);  //истолкование его как скорости и угла
 
        angle = atof(argv[2]);
 
        needRead = false;
 
    }
 
    if(needRead)
 
    {
 
        puts("Enter initial velocity (m/s)");
 
        scanf("%lf", &velocity);
 
    }
 
    if(velocity < 0)    //проверка, если скорость меньше 0
 
        err("Initial velocity must be above 0");
 
    if(needRead)
 
    {
 
        puts("Enter initial angle (0-180 degrees)");
 
        scanf("%lf", &angle);
 
    }
 
    if((angle < 0) or (angle > 180))    //проверка, что угол в нужном интервале
 
        err("Initial angle must be from 0 to 180");
 
    angle = angle / 180 * M_PI; // a = a/180*pi; преобразование угла из градусов в радианы
 
    output = fopen("Coordinates.txt", "w"); //открытие результативного файла
 
    //вычисление и печать 4 значений
 
    printCoordinate("Without windage", getCoordinatesWithoutWindage(velocity, angle));
 
    printCoordinate("Verlet, linear dependence", getCoordinatesVerletLinear(velocity, angle));
 
    printCoordinate("Accurate, linear dependence", getCoordinatesAccurateLinear(velocity, angle));
 
    printCoordinate("Verlet, square dependence", getCoordinatesVerletSquare(velocity, angle));
 
    fclose(output); //закрытие файла
 
    return 0;
 
}
 
</syntaxhighlight>
 
</div>
 
Скачать можно [http://tm.spbstu.ru/%D0%A4%D0%B0%D0%B9%D0%BB:%D0%9A%D0%BE%D0%BE%D1%80%D0%B4%D0%B8%D0%BD%D0%B0%D1%82%D1%8B.zip здесь]
 
 
 
<div class="mw-collapsible mw-collapsed" style="width:100%" >
 
 
 
 
 
'''[[Сенников Иван]]'''
 
 
 
'''Суть программы:'''Программа позволяет отслеживать траекторию движения тела, брошенного под углом к горизонту, в каждом из четырех случаев/методов.
 
 
 
'''Идея:''' Программа состоит из четырех методов: 1) движение тела без учета сопротивления воздуха; 2) движение тела с учетом сопротивления воздуха по первому методу Верле; 3) движение тела с учетом сопротивления воздуха по точному методу; 4) движение тела с учетом сопротивления воздуха по второму методу Верле.
 
 
 
'''Инструкция:''' Результаты программы будут записаны в соответствующий файл (подробности смотри в самой программе). Пользователю будет предоставлена возможность ввести начальную скорость и угол, под которым и бросают тело.
 
 
 
Ссылка для скачиваний: [http://tm.spbstu.ru/Файл:Throws_v2.0.zip здесь].
 
 
 
</div>
 
 
 
<div class="mw-collapsible mw-collapsed" style="width:100%" >
 
'''[[Степанянц Степан]]'''
 
 
 
'''Описание программы''': программа записывает в четыре файла результаты вычисления:
 
# Координаты, рассчитанные по формуле, при движении без сопротивления воздуха;
 
# Координаты, полученные методом Верле при линейной зависимости силы сопротивлении воздуха от скорости;
 
# Координаты, полученные из точного решения, при линейной зависимости силы сопротивлении воздуха от скорости;
 
# Координаты, полученные методом Верле при квадратичной зависимости силы сопротивлении воздуха от скорости.
 
 
 
Скачать можно  [http://tm.spbstu.ru/%D0%A4%D0%B0%D0%B9%D0%BB:Mainpr.rar тут].
 
 
 
<div class="mw-collapsible-content">
 
[[File:graph239.png]]
 
 
 
Для тела с массой 1,сопротивлением воздуха 0.05, угол бросания 30°, начальная скорость 40 м/с, ускорение свободного падения 9.8 м/c^2;
 
 
 
 
 
 
 
Файл "'''main.cpp'''"
 
<syntaxhighlight lang="cpp" line start="1" enclose="div">
 
#include <iostream>
 
#include <locale.h>
 
#include <math.h>
 
#include <fstream>
 
#include<iomanip>
 
#include <cmath>
 
using namespace std;
 
main ()
 
{
 
    ofstream F;                                                                    //a1-угол в градусах,dt-шаг,r-сопротивление воздуха
 
int u0=50;
 
double x,y,t,a,a1=30,dt=0.1,y0=0,x0=0,g=9.8,r=0.05,m=1,ux,uy,ypr,xpr,ysl,xsl,u,yt; //ux,uy - проэкции скорости на оси х и у.
 
a=a1*M_PI/180; //Градусы в радианы
 
t=0;
 
 
                                        //Движение без сопротивления воздуха
 
F.open("C:\\1.txt",ios::out);
 
while(y>=0)
 
{
 
    x=x0+u0*cos(M_PI/6)*t;
 
    y=y0+u0*sin(M_PI/6)*t - 0.5 * g * t * t;  //Расчитываем координаты в каждой точке через шаг
 
  F<<x<<" "<<y<<endl;
 
  t=t+dt;
 
 
}
 
 
F.close();
 
                                        //Точное решение для линейной зависимости
 
F.open("C:\\2.txt",ios::out);
 
y=y0;
 
x=x0;
 
t=0;                                                                            //Расчитываем координаты в каждой точке через шаг
 
while(y>=0)
 
{
 
        ux = u0 * cos(a);
 
        uy = u0 * sin(a);
 
        x = x0+ (m * ux / r)* (1 - exp(-1 * r * t / m));                      //подстановка формул
 
        y = y0+(m/r)*((uy + g * m / r)*(1 - exp(-1 * r * t / m)) - g * t);
 
        t = t + dt;
 
 
      F << x << ' ' << y << endl;
 
 
 
 
}
 
  F.close();
 
                                                        //метод Верле 1
 
ypr = y0 - u0*sin(a)*dt;
 
yt=ypr;
 
    xpr = x0 - u0*cos(a)*dt;
 
    x = x0;                          //Начальные условия
 
    y = y0;
 
    u = u0;
 
    ux = u0 * cos(a);
 
    uy = u0 * sin(a);                       
 
F.open("C:\\3.txt",ios::out);
 
 
    while (y >= y0)
 
    {
 
        xsl = 2 * x - xpr - (r / m) * u * ux * (dt * dt);
 
        ux = ( xsl - xpr )/ (2 * dt);
 
        ysl = 2 * y - ypr - (g + (r / m) * u * uy) * (dt * dt);      //xsl,ysl - координаты на шаге вперед. xpr,ypr- назад
 
        uy =  (ysl - ypr)/ (2 * dt);
 
        u = sqrt(uy*uy + ux*ux );
 
        F << x << ' ' << y << endl;
 
 
        xpr = x;
 
        x = xsl;
 
        ypr = y;
 
        y = ysl;
 
    }
 
    F.close();
 
                                                      //Метод Верле 2
 
    ypr = y0 - u0*sin(a)*dt;
 
yt=ypr;
 
    xpr = x0 - u0*cos(a)*dt;
 
    x = x0;                                                                            //xsl,ysl - координаты на шаге вперед. xpr,ypr- назад
 
    y = y0;
 
    u = u0;
 
    ux = u0 * cos(a);                           
 
    uy = u0 * sin(a);
 
F.open("C:\\4.txt",ios::out);
 
   
 
    while (y >= y0)
 
    {
 
        xsl = 2 * x - xpr - (r / m) * ux * (dt * dt);
 
        ux = ( xsl - xpr )/ (2 * dt);
 
        ysl = 2 * y - ypr - (g + (r / m) * uy) * (dt * dt);
 
        uy =  (ysl - ypr)/ (2 * dt);
 
        u = sqrt(uy*uy + ux*ux );
 
        F << x << ' ' << y << endl;
 
 
        xpr = x;
 
        x = xsl;
 
        ypr = y;
 
        y = ysl;
 
    }
 
    F.close();
 
 
 
return 0;
 
 
 
}
 
 
 
</syntaxhighlight>
 
</div>
 
 
 
 
 
<div class="mw-collapsible mw-collapsed" style="width:100%" >
 
'''[[Александр Сюрис]]'''
 
 
 
'''Описание программы''':
 
Программа записывает в текстовый файл результаты вычисления координат по x и y с шагом в 0.1 секунду(возможно изменить) четырьмя различными способами:
 
#Координаты, рассчитанные по формуле, при движении без сопротивления воздуха
 
#Координаты, полученные из точного решения, при линейной зависимости силы сопротивлении          воздуха от скорости
 
#Координаты, полученные методом Верле при линейной зависимости силы сопротивлении воздуха от скорости
 
#Координаты, полученные методом Верле при квадратичной зависимости силы сопротивлении воздуха от скорости
 
Скачать можно  [http://mech.spbstu.ru/File:%D0%9F%D0%BE%D0%BB%D0%B5%D1%82_%D1%82%D0%B5%D0%BB%D0%B0(%D0%90%D0%BB%D0%B5%D0%BA%D1%81%D0%B0%D0%BD%D0%B4%D1%80%D0%A1%D1%8E%D1%80%D0%B8%D1%81).zip тут].
 
<div class="mw-collapsible-content">
 
[[File:Снимок.PNG]]
 
Для тела с массой 1,сопротивлением воздуха 0.05, угол бросания 45°, начальная скорость 30 м/с, ускорение свободного падения 9.8 м/c^2;
 
Файл "'''main.cpp'''"
 
<syntaxhighlight lang="cpp" line start="1" enclose="div">
 
#include <iostream>
 
#include <fstream>
 
#include <math.h>
 
#include <cmath>
 
using namespace std;
 
int o;
 
double v,a,m,k;
 
ofstream fout("file.txt");//создаем объект, сяванный с файлом file.txt
 
 
 
 
 
 
 
int rez_1(double v, double a)
 
{
 
    fout<<"---------------Первый режим-------------------------"<<endl;
 
    fout<<" T=0 x=0 y=0";
 
    fout<<endl;
 
    double x=0,y=0,t=0.1, V0x, V0y, g=9.8,t1, T=0.1, Ty;
 
    V0x=v*cos(a/180*M_PI);//рассчет проекций начальных скоростей на оси x и y с переводом угла в радианы
 
    V0y=v*sin(a/180*M_PI);
 
    Ty=2*V0y/g;//время полета
 
    while (y>0 || x==0)//условие: пока тело не упадет на землю(те y=0, при этом не учитывая начало полета
 
    {
 
        x=x+V0x*t;              //ф-лы для рассчета x и y в данный момент времени
 
        y=y+V0y*t-g*pow(t,2)/2;
 
 
 
        if (y<0) //если y<0
 
            {
 
                t1=Ty-T; //рассчитываем время,которое осталось лететь телу до земли
 
                x=x+V0x*t1;//используя это время находим координату по х
 
                fout<<" T="<<Ty<<" x="<<x<<" y=0"<<endl;//ввод в текстовый файл
 
                break;
 
            }
 
            else
 
                {
 
                    V0y=V0y-g*t;// иначе находим новую скорость по y (по x не меняется)
 
                    fout<<" T="<<T<<" x="<<x<<" y="<<y<<endl;
 
                    T=T+t;//увел время на шаг
 
                }
 
    }
 
 
 
 
 
}
 
 
 
 
 
int rez_2(double v, double a, double k, double m)
 
{
 
    fout<<"---------------Второй режим работы-------------------------"<<endl;
 
    fout<<" T=0 x=0 y=0";
 
    fout<<endl;
 
    double t=0.1, Vx=v*cos(a/180*M_PI), Vy=v*sin(a/180*M_PI),y,x,T=0.1,g=9.8;
 
    x=(m*Vx/k)*(1-exp(-1*k*T/m));            //ф-лы для рассчета x и y в данный момент времени
 
    y =(m/k)*((Vy+g*m/k)*(1-exp(-1*k*T/m))-g*T);  //точное решение при лин завсисимости
 
    while (y>0)
 
    {
 
        x=(m*Vx/k)*(1-exp(-1*k*T/m));
 
        y =(m/k)*((Vy+g*m/k)*(1-exp(-1*k*T/m))-g*T);
 
        fout<<" T="<<T<<" x="<<x<<" y="<<y<<endl;
 
        T=T+t;
 
    }
 
 
 
 
 
}
 
 
 
 
 
 
 
int rez_3(double v, double a, double k, double m)
 
{
 
  fout<<"---------------Третий режим работы-------------------------"<<endl;
 
    fout<<" T=0 x=0 y=0";
 
    fout<<endl;
 
    double t=0.1, Vxn=v*cos(a/180*M_PI), Vyn=v*sin(a/180*M_PI),
 
    x3=0,x2=0,x1=x2-Vxn*t,  y3=0,
 
    y2=0, y1=y2-Vyn*t, g=9.8, t1, T=0.1;//шаг, скорость по х в момент времени T, -\\- по y в момент времени Т
 
    //координата по х в в момент времени T, -\\- в n-1 шаг, -\\- в n шаге, аналогично для y,
 
 
 
 
 
    x3=2*x2-x1-k/m*Vxn*pow(t,2);  //координаты в момент времени T
 
    y3=2*y2-y1-(g-+k/m*Vyn)*pow(t,2);
 
    Vxn=(x3-x1)/(2.0*t); //скорость в момент времени T
 
    Vyn=(y3-y1)/(2.0*t);
 
    x1=x2;// приравнивание к координате на n-1 шаге значение координаты в n шаге
 
    y1=y2;
 
    x2=x3;//-//- к координате в n шаге значение в момент времени T
 
    y2=y3;
 
    while (y2>0)
 
    {
 
        x3=2*x2-x1-k/m*Vxn*pow(t,2);
 
        y3=2*y2-y1-(g+k/m*Vyn)*pow(t,2);
 
        Vxn=(x3-x1)/(2.0*t);
 
        Vyn=(y3-y1)/(2.0*t);
 
        fout<<" T="<<T<<" x="<<x2<<" y="<<y2<<endl;
 
 
 
        if (y3<0)
 
        {
 
            t1=sqrt(abs((-y1+2*y2)/(g+k/m*Vyn)));
 
            x3=2*x2-x1-k/m*Vxn*pow((t+t1),2);
 
            fout<<" T="<<T+t1<<" x="<<x3<<" y="<<0<<endl;
 
        }
 
 
 
        T=T+t;
 
        x1=x2;
 
        y1=y2;
 
        x2=x3;
 
        y2=y3;
 
 
 
    }
 
 
 
}
 
 
 
 
 
int rez_4(double v, double a, double k, double m)
 
{
 
  fout<<"---------------Четвертый режим работы-------------------------"<<endl;
 
    fout<<" T=0 x=0 y=0";
 
    fout<<endl;
 
    double t=0.1, Vxn=v*cos(a/180*M_PI), Vyn=v*sin(a/180*M_PI),
 
    x3=0,x1=0, x2=x1+Vxn*t, y3=0, y1=0,
 
    y2=y1+Vyn*t, g=9.8, t1, T=0.1, V=v;//шаг, скорость по х в момент времени T, -\\- по y в момент времени Т
 
    //координата по х в в момент времени T, -\\- в n-1 шаг, -\\- в n шаге, аналогично для y,
 
 
 
 
 
    x3=2.0*x2-x1-(k/m)*V*Vxn*pow(t,2);
 
    y3=2.0*y2-y1-(g+(k/m)*V*Vyn)*pow(t,2);
 
    Vxn=(x3-x1)/(2.0*t);
 
    Vyn=(y3-y1)/(2.0*t);
 
    V=sqrt(pow(Vxn,2)+pow(Vyn,2.0));
 
    x1=x2;
 
    y1=y2;
 
    x2=x3;
 
    y2=y3;
 
    while (y2>0)
 
    {
 
        x3=2.0*x2-x1-(k/m)*Vxn*V*pow(t,2);
 
        y3=2.0*y2-y1-(g+(k/m)*Vyn*V)*pow(t,2);
 
        Vxn=(x3-x1)/(2.0*t);
 
        Vyn=(y3-y1)/(2.0*t);
 
        V=sqrt(pow(Vxn,2)+pow(Vyn,2));
 
        fout<<" T="<<T<<" x="<<x2<<" y="<<y2<<endl;
 
 
 
        if (y3<0)
 
        {
 
            t1=sqrt(abs((-y1+2.0*y2)/(g+(k/m)*Vyn*V)));
 
            x3=2.0*x2-x1-(k/m)*Vxn*V*pow((t+t1),2);
 
            fout<<" T="<<T+t1<<" x="<<x3<<" y="<<0<<endl;
 
        }
 
 
 
 
 
        T=T+t;
 
        x1=x2;
 
        y1=y2;
 
        x2=x3;
 
        y2=y3;
 
 
 
    }
 
 
 
}
 
 
 
 
 
int main()
 
{
 
 
 
setlocale(LC_ALL, "rus");
 
cout<<"Введите скорость тела и угол"<<endl;
 
cin>>v>>a;
 
 
 
while (1>0){
 
cout<<"Выберите режим работы программы:"<<endl;
 
cout<<"1 - Координаты, рассчитанные по формуле, при движении без сопротивления воздуха"<<endl;
 
cout<<"2 - Координаты, полученные из точного решения, при линейной зависимости силы сопротивлении воздуха от скорости"<<endl;
 
cout<<"3- Координаты, полученные методом Верле при линейной зависимости силы сопротивлении воздуха от скорости"<<endl;
 
cout<<"4 - Координаты, полученные методом Верле при квадратичной зависимости силы сопротивлении воздуха от скорости"<<endl;
 
cout<<"5 - Выйти";
 
cin>>o;
 
 
 
if (o==1)
 
    rez_1(v,a);
 
if (o==2)
 
    {
 
    cout<<"Введите массу тела и коэф сопротивления воздуха:"<<endl;
 
    cin>>m>>k;
 
    rez_2(v,a,k,m);
 
    }
 
 
 
if (o==3)
 
    {
 
    cout<<"Введите массу тела и коэф сопротивления воздуха:"<<endl;
 
    cin>>m>>k;
 
    rez_3(v,a,k,m);
 
    }
 
  if (o==4)
 
    {
 
    cout<<"Введите массу тела и коэф сопротивления воздуха:"<<endl;
 
    cin>>m>>k;
 
    rez_4(v,a,k,m);
 
    }
 
  if (o==5)
 
        break;
 
 
 
            }
 
}
 
 
 
 
 
</syntaxhighlight>
 
</div>
 
 
 
 
 
<div class="mw-collapsible mw-collapsed" style="width:100%" >
 
'''[[Тимошенко Валентина]]'''
 
 
 
'''Описание программы''': при запуске пользователь вводит шаг функции, угол, под которым бросают тело, массу тела, сопротивление воздуха и скорость.
 
Программа записывает в четыре файла результаты вычисления:
 
#Координаты, рассчитанные по формуле для движения без сопротивления воздуха;
 
#Координаты, рассчитанные по формуле для движения с учетом сопротивления воздуха;
 
#Координаты, полученные методом Верле при квадратичной зависимости силы сопротивления воздуха от скорости.
 
#Координаты, полученные методом Верле при линейной зависимости силы сопротивления воздуха от скорости;
 
 
 
Скачать можно  [http://tm.spbstu.ru/Файл:motion.zip тут.]
 
 
 
<div class="mw-collapsible-content">
 
 
 
'''Визуализированный результат работы программы'''
 
[[File:Grafics.png]]
 
 
 
Графики приведены для движения тела массой 1, со скоростью 50, под углом 45 градусов. Сопротивление воздуха принято равным 0.0001, шаг 0,1.
 
 
 
<syntaxhighlight lang="cpp" line start="1" enclose="div">
 
 
 
#include <iostream> ///программа, подсчитывающая и записывающая в файл координаты движения тела для двух вариантов метода Верле
 
#include <fstream> /// и для движений с учётом сопротивления и без его учёта
 
#include <math.h>
 
#include<stdlib.h>
 
using namespace std;
 
 
 
int main()
 
{
 
    double a, step, Pi, g, Vo, m, r;
 
    ///а - угол, под которым движется тело, step - шаг функции, Vo - начальная скорость тела, m - масса тела, r - величина сопротивления
 
 
 
    double x, y, x_0, y_0, x0, y0, Vx, Vy;
 
    ///переменные для движения точки без учёта сопротивления и с его учётом
 
    ///х - изменяющаяся пошагово координата тела по оси Ох, у - изменяющаяся пошагово координата тела по оси Оу,
 
    ///х0 - начальная координата тела по оси Ох, у0 - начальная координата тела по оси Оу
 
    ///Vx - скорость тела по оси Ох, Vу - скорость тела по оси Оу
 
    ///x_0 - изменяющаяся пошагово координата тела по оси Ох с учётом сопротивления, у_0 - изменяющаяся пошагово координата тела по оси Оу с учётом сопротивления
 
 
 
    double Vy0, Vx0, x1, x2, x3, y1, y2, y3, Vxn, Vyn, Vn;
 
    ///переменные для 1го варианта метода Верле
 
    ///х1 - координата тела по оси Ох на (n-1) шаге, х2 - координата тела по оси Ох на (n) шаге, х3 - координата тела по оси Ох на (n+1) шаге
 
    ///у1 - координата тела по оси Оу на (n-1) шаге, у2 - координата тела по оси Оу на (n) шаге, у3 - координата тела по оси Оу на (n+1) шаге
 
    ///Vx0 - начальная скорость тела по оси Ох, Vy0 - начальная скорость тела по оси Оу
 
    ///Vxn - скорость тела в данный момент времени по оси Ох, Vyn - скорость тела в данный момент времени по оси Оу
 
 
 
    double Vxn2, Vyn2, x_1, x_2, x_3, y_1, y_2, y_3;
 
    ///переменные для 2го варианта метода Верле
 
    ///х_1 - координата тела по оси Ох на (n-1) шаге, х_2 - координата тела по оси Ох на (n) шаге, х_3 - координата тела по оси Ох на (n+1) шаге
 
    ///у_1 - координата тела по оси Оу на (n-1) шаге, у_2 - координата тела по оси Оу на (n) шаге, у_3 - координата тела по оси Оу на (n+1) шаге
 
    ///Vxn2 - скорость тела в данный момент времени по оси Ох, Vyn2 - скорость тела в данный момент времени по оси Оу
 
 
 
    g=10; ///значение ускорения свободного падения
 
    Pi=3.14159265; /// значение числа П, используем для перевода радиан в градусы
 
 
 
    do ///цикл, запрашивающий ввод пользователем значения шага функции
 
    {
 
        cout << "Input the step, it must be less than 1" << endl; ///ввод с клавиатуры шага(то же самое, что дельта t), шаг должен быть маленьким (меньше 1)
 
        cin >> step;  ///вывод величины шага на экран
 
    }
 
    while (step>=1); ///выход из цикла не будет обеспечен, пока пользователь не введет число, меньшее 1
 
 
 
    cout << '\n' << "Input the corner in degrees,the corner is in the range from 0 to 90 degrees" << endl; ///ввод с клавиатуры угла в радианах (угол от 0 до 90 градусов)
 
    cin >> a; ///вывод значение угла на экран
 
    a=(Pi*a)/180.0;
 
    cout << '\n' << "Input the weight" << endl; ///ввод с клавиатуры значения массы
 
    cin >> m; ///вывод величины массы на экран
 
 
 
    do ///цикл, запрашивающий ввод пользователем значения сопротивления воздуха
 
    {
 
        cout << '\n' << "Input the value of the resistance, it must be less than 1" << endl; ///ввод с клавиатуры величины сопротивления
 
        cin >> r; ///вывод значения сопротивления на экран
 
    }
 
    while (r>=1); ///выход из цикла не будет обеспечен, пока пользователь не введет число, меньшее 1
 
 
 
    cout << '\n' << "Input the speed" << endl; ///ввод с клавиатуры значения начальной скорости
 
    cin >> Vo; ///вывод значения скорости на экран
 
 
 
    ///для движения без учёта сопротивления
 
    x0=0; ///обнуление переменных
 
    y0=0;
 
    x=0;
 
    y=0;
 
 
 
    ///для движения с учётом сопротивления
 
    x_0=0; ///обнуление переменных
 
    y_0=0;
 
 
 
    ///для 1го варианта метода Верле
 
 
 
    Vx0=Vo*cos(a); ///расчет проекции начальной скорости по оси Ох
 
    Vy0=Vo*sin(a); ///расчет проекции начальной скорости по оси Оу
 
 
 
    x2=0; ///обнуление переменных
 
    y2=0;
 
    x3=0;
 
    y3=0;
 
 
 
    y1=y2-Vy0*step; ///расчет начального значения координаты по оси Оу
 
    x1=x2-Vx0*step; ///расчет начального значения координаты по оси Ох
 
 
 
    ///для 2го варианта метода Верле
 
 
 
    x_2=0; ///обнуление переменных
 
    y_2=0;
 
    x_3=0;
 
    y_3=0;
 
 
 
    Vxn2=Vo*cos(a); ///расчет скорости тела на начальный момент времени по оси Ох
 
    Vyn2=Vo*sin(a); ///расчет скорости тела на начальный момент времени по оси Оу
 
 
 
    y_1=y_2-Vo*sin(a)*step; ///расчет начального значения координаты на (п-1) шаге по оси Оу
 
    x_1=-Vo*cos(a)*step;    ///расчет начального значения координаты на (п-1) шаге по оси Ох
 
 
 
    ofstream out("For method without resistance.txt");
 
    ///запись в файл значений координат по осям Ох и Оу для движения без сопротивления
 
 
 
    for (int i=0; y>=0; ++i) ///цикл для подсчета координат при движении тела без учёта сопротивления
 
    {
 
        x=Vo*step*i*cos(a); ///расчет координаты тела по оси х
 
        y=Vo*sin(a)*i*step-(g*i*step*i*step)*0.5; ///расчет координаты тела по оси y
 
 
 
        out << x << "    " << y <<'\n';  ///вывод всех значений координат по оси х и по оси у при движении тела без учёта сопротивления
 
    }
 
    out.close();
 
 
 
    ofstream out1 ("For method with resistance.txt");
 
    ///запись в файл значений координат по осям Ох и Оу для движения с учётом сопротивления
 
 
 
    for (int i=0; y_0>=0; ++i) ///цикл для подсчета координат при движении тела с учётом сопротивления
 
    {
 
        Vx=Vo*cos(a); ///расчет скорости тела по оси Ох
 
        Vy=Vo*sin(a); ///расчет скорости тела по оси Оу
 
        x_0=x0+(m/r)*Vx*(1.0 - exp((-r*i*step)/m)); ///расчет координаты тела по оси х
 
        y_0=y0+(m/r)*(Vy+g*(m/r))*(1.0 - exp((-r*i*step)/m))-g*i*step*(m/r); ///расчет координаты тела по оси y
 
 
 
        out1 << x_0 << "    " << y_0 <<'\n';  ///вывод всех значений координат по оси х и по оси у при движении c учётом сопротивления
 
    }
 
    out1.close();
 
 
 
    ofstream out2 ("For method Verle 1.txt");
 
    ///запись в файл значений координат по осям Ох и Оу для 1го варианта метода Верле
 
 
 
    for (int i=0; y3>=0; ++i) ///цикл для подсчета координат и скорости по времени для 1го варианта метода Верле
 
    {
 
        x3=2*x2-x1-(r/m)*Vn*Vxn*step*step; ///расчет координаты в данный момент времени по оси Ох
 
        y3=2*y2-y1-(g+(r/m)*Vn*Vyn)*step*step; ///расчет координаты в данный момент времени по оси Оу
 
        Vxn=(x3-x1)/(2.0*step); ///расчет скорости в данный момент времени по оси Оу
 
        Vyn=(y3-y1)/(2.0*step); /// расчет скорости в данный момент времени по оси Ох
 
        Vn=sqrt(Vxn*Vxn+Vyn*Vyn); ///расчет скорости тела по модулю
 
 
 
        x1=x2; ///присваивание значению координаты х1 на (n-1) шаге значение координаты х2 на n шаге
 
        x2=x3; ///присваивание значению координаты х2 на (n) шаге значение координаты х3 на (n+1) шаге
 
        y1=y2; ///присваивание значению координаты у1 на (n-1) шаге значение координаты у2 на n шаге
 
        y2=y3; ///присваивание значению координаты у2 на (n) шаге значение координаты у3 на (n+1) шаге
 
 
 
        out2 << x3 << "  " << y3 <<'\n'; ///вывод всех значений координат по оси Ох и по оси Оу на экран для 1го варианта метода Верле
 
    }
 
    out2.close();
 
 
 
    ofstream out3 ("For method Verle 2.txt");
 
    ///запись в файл значений координат по осям Ох и Оу для 2го варианта метода Верле
 
 
 
    for (int i=0; y_3>=0; ++i) ///цикл для подсчета координат и скорости по времени для 2го варианта метода Верле
 
    {
 
        x_3=2*x_2-x_1-(r/m)*Vxn2*step*step; ///расчет координаты в данный момент времени по оси Ох
 
        y_3=2*y_2-y_1-(g+(r/m)*Vyn2)*step*step; ///расчет координаты в данный момент времени по оси Оу
 
        Vxn2=(x_3-x_1)/(2.0*step); ///расчет скорости в данный момент времени по оси Оу
 
        Vyn2=(y_3-y_1)/(2.0*step); ///расчет скорости в данный момент времени по оси Ох
 
 
 
        x_1=x_2; ///присваивание значению координаты х_1 на (n-1) шаге значение координаты х_2 на n шаге
 
        x_2=x_3; ///присваивание значению координаты х_2 на (n) шаге значение координаты х_3 на (n+1) шаге
 
        y_1=y_2; ///присваивание значению координаты у_1 на (n-1) шаге значение координаты у_2 на n шаге
 
        y_2=y_3; ///присваивание значению координаты у_2 на (n-1) шаге значение координаты у_3 на (n+1) шаге
 
 
 
        out3 << x_3 << "  " << y_3 <<'\n'; ///вывод на экран всех значений координат по оси Ох и по оси Оу для 2го варианта метода Верле
 
 
 
    }
 
    out3.close();
 
 
 
    cout << '\n' << "All results are saved in files." << endl; ///вывод на экран сообщения о записи в файл всех результатов
 
    cout << '\n' << "The program is finished." << endl; ///вывод на экран сообщения о завершении работы программы
 
    return 0;
 
}
 
</syntaxhighlight>
 
</div>
 
 
 
<div class="mw-collapsible mw-collapsed" style="width:100%" >
 
'''[[Уманский Александр]]'''
 
 
 
'''Описание программы''': программа записывает в четыре файла результаты вычисления:
 
# Координаты, рассчитанные по формуле, при движении без сопротивления воздуха;
 
# Координаты, полученные методом Верле при линейной зависимости силы сопротивлении воздуха от скорости;
 
# Координаты, полученные из точного решения, при линейной зависимости силы сопротивлении воздуха от скорости;
 
# Координаты, полученные методом Верле при квадратичной зависимости силы сопротивлении воздуха от скорости.
 
 
 
<div class="mw-collapsible-content">
 
 
 
[[File:Methods.rar|Скачать архив]]
 
 
 
[[File:1.png]]
 
 
 
<syntaxhighlight lang="cpp" line start="1" enclose="div">
 
 
 
</syntaxhighlight>
 
</div>
 
Вам запрещено изменять защиту статьи. Edit Создать редактором

Обратите внимание, что все добавления и изменения текста статьи рассматриваются как выпущенные на условиях лицензии Public Domain (см. Department of Theoretical and Applied Mechanics:Авторские права). Если вы не хотите, чтобы ваши тексты свободно распространялись и редактировались любым желающим, не помещайте их сюда.
Вы также подтверждаете, что являетесь автором вносимых дополнений или скопировали их из источника, допускающего свободное распространение и изменение своего содержимого.
НЕ РАЗМЕЩАЙТЕ БЕЗ РАЗРЕШЕНИЯ МАТЕРИАЛЫ, ОХРАНЯЕМЫЕ АВТОРСКИМ ПРАВОМ!

To protect the wiki against automated edit spam, we kindly ask you to solve the following CAPTCHA:

Отменить | Справка по редактированию  (в новом окне)